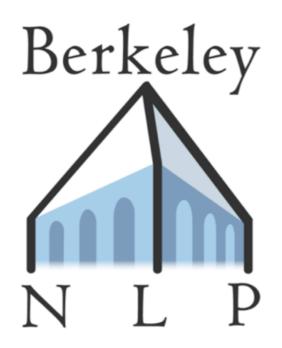
N-gram Language Models



EECS 183/283a: Natural Language Processing

N-Grams

- An *n*-gram is a sequence of *n* tokens
- ullet Given a vocabulary ${\mathcal V}$, the set of all possible n-grams is ${\mathcal V}^n$

A language model assigns a

• • •

Autoregressive Language Models

$$p(\overline{x}) = \prod_{i=1}^{|\overline{x}|} p(x_i \mid x_1, \dots, x_{i-1})$$

$$= p(x_1) p(x_2 \mid x_1) \dots p(x_n \mid x_1, \dots, x_{n-1})$$

probability that probability that the first word is x_1 the second word is x_2 , given that the first word is x_1

probability that the sentence ends after the sequence $\langle x_1, \ldots, x_{n-1} \rangle$

Core modeling challenge:

How do we compute these conditional probabilities?

Autoregressive N-Gram Language Models

$$p(\overline{x}) = \prod_{i=1}^{|\overline{x}|} p(x_i \mid x_1, \dots, x_{i-1})$$

$$= p(x_1)p(x_2 \mid x_1) \dots p(x_n \mid x_1, \dots, x_{n-1})$$

$$p(X_i = x) = p(x \mid x_1, \dots, x_{i-1})$$

Challenge: how do we parameterize this if there can be arbitrarily many previous tokens?

Let's make a Markov assumption:

The probability of word at index i only depends on the n - 1 words that came before it

Autoregressive N-Gram Language Models

$$p(\overline{x}) = \prod_{i=1}^{|\overline{x}|} p(x_i \mid x_1, \dots, x_{i-1})$$

$$= p(x_1)p(x_2 \mid x_1) \dots p(x_n \mid x_1, \dots, x_{n-1})$$

$$p(X_i = x) = p(x \mid x_1, \dots, x_{i-1})$$

$$\approx p(x \mid x_{i-n+1}, \dots, x_{i-1})$$

Let's make a Markov assumption:

The probability of word at index i only depends on the n - 1 words that came before it

Autoregressive N-Gram Language Models

$$\begin{split} p(\overline{x}) &= \prod_{i=1}^{|\overline{x}|} p(x_i \mid x_1, \dots, x_{i-1}) \\ &= p(x_1) p(x_2 \mid x_1) \dots p(x_n \mid x_1, \dots, x_{n-1}) \\ p(X_i = x) &= p(x \mid x_1, \dots, x_{i-1}) \\ &\approx p(x \mid \underbrace{x_{i-n+1}, \dots, x_{i-1}}) \\ &\text{Preceding (n-1)-gram} \end{split}$$

$$pprox rac{C(x_{i-n+1},\ldots,x_{i-1},x)}{C(x_{i-n+1},\ldots,x_{i-1})}$$
 count of n-gram

N-Gram Language Models

- Now, all we need to model is n-gram and (n-1)-gram probabilities!
- We can do this by counting n-gram occurrences in the wild
- Simplest n-gram language model: n = 1 (unigrams, aka bag of words)

total number of words in corpus
$$p(X_i = x) \approx p(x) \in \Delta^{\mathcal{V}} \text{ across corpus}$$

$$= \frac{C(x)}{\sum_{\overline{x} \in \mathcal{D}} |\overline{x}|}$$

$$\text{words in corpus}$$

Unigram Language Model

$$p(\overline{x}) = \prod_{i=1}^{|\overline{x}|} p(x_i \mid x_1, \dots, x_{i-1})$$

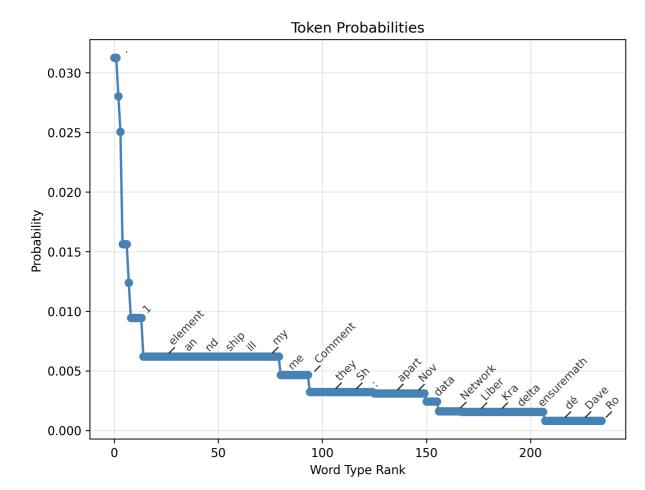
$$\approx \prod_{i=1}^{|\overline{x}|} p(x_i)$$

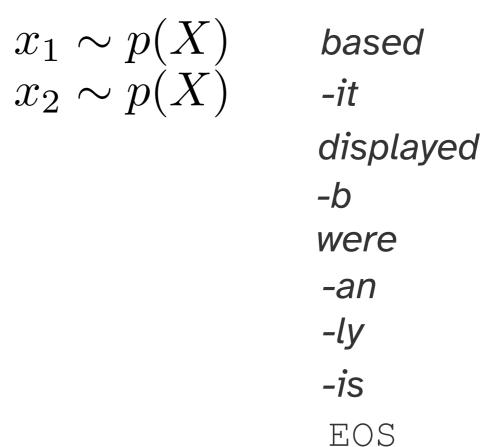
p(yellow suitcase and red hat) = p(red suitcase and yellow hat)

Word order does not matter!
This is why it's called "bag of words"

Unigram Language Model

p(X) (unigram probabilities)





basedit displayedb wereanlyis

What are the parameters of this model?

How many parameters are there?

$$p(X_i = x) \approx \frac{C(x_{i-n+1}, \dots, x_{i-1}, x)}{C(x_{i-n+1}, \dots, x_{i-1})}$$

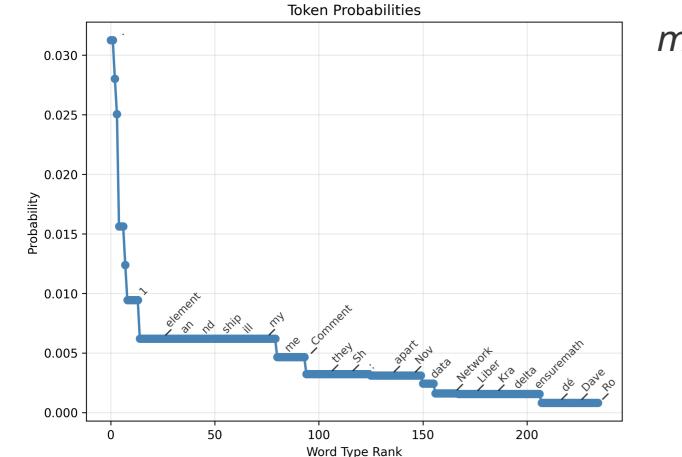
$$= \frac{C(x_{i-1}, x_i)}{C(x_{i-1})}$$

$$p(\overline{x}) \approx \prod_{i=1}^{|\overline{x}|} \frac{C(x_{i-1}, x_i)}{C(x_{i-1})}$$

 First sample a start token using the empirical first-token distribution:

$$p(X_1 = x) = \frac{C(\mathrm{BOS}, x)}{C(\mathrm{BOS})} = \frac{C(\mathrm{BOS}, x)}{|\mathcal{D}|}$$

$$p(X \mid \mathtt{BOS})$$



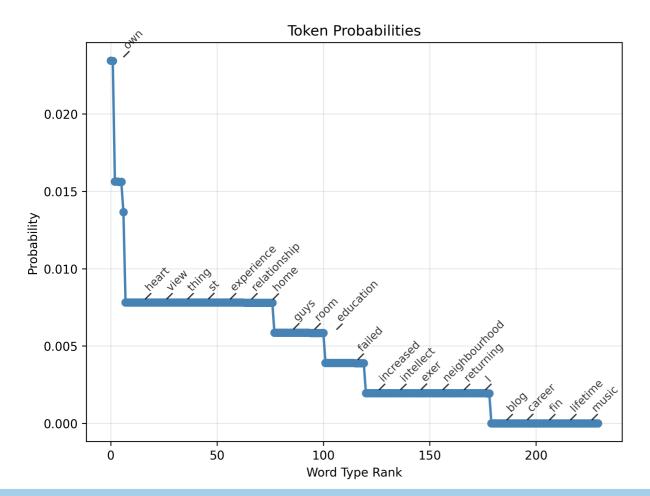
my

Infini-gram (Liu et al. 2024) stats, vibecoded with Claude

Then sample conditioned on the previous word:

$$p(X_2 = x) = \frac{C(\text{my}, x)}{C(\text{my})}$$

$$p(X \mid my)$$



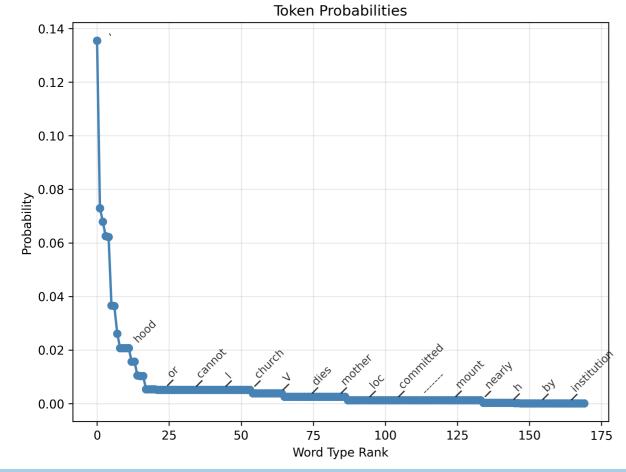
my mother

Infini-gram (Liu et al. 2024) stats, vibecoded with Claude

Then sample conditioned on the previous word:

$$p(X_3 = x) = \frac{C(\text{mother}, x)}{C(\text{mother})}$$

$$p(X \mid \text{mother})$$



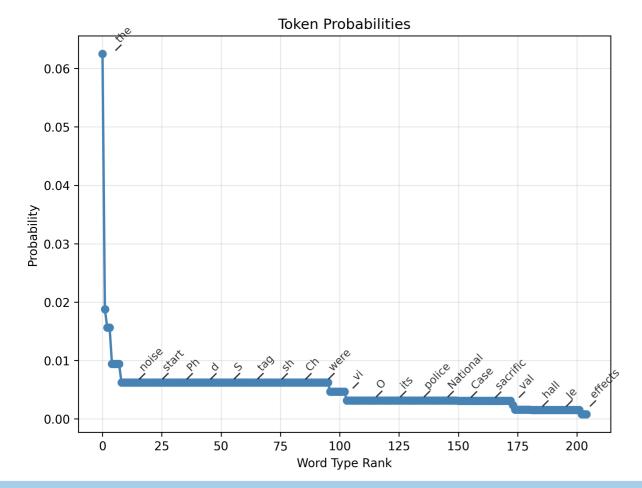
my mother and

Infini-gram (Liu et al. 2024) stats, vibecoded with Claude

Then sample conditioned on the previous word:

$$p(X_4 = x) = \frac{C(\text{and}, x)}{C(\text{and})}$$

$$p(X \mid \text{and})$$



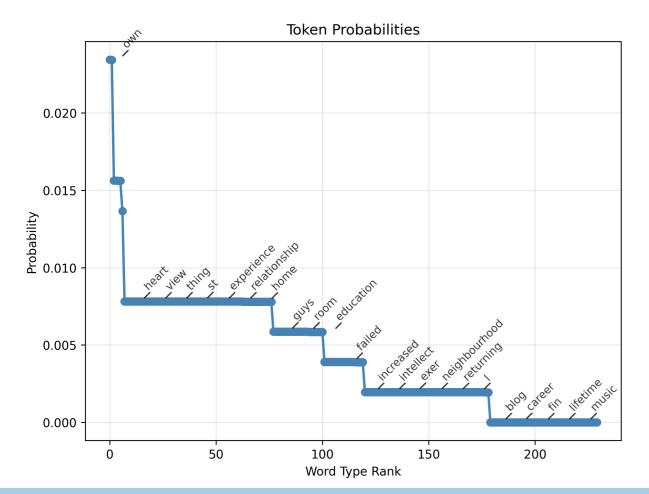
my mother and my

Infini-gram (Liu et al. 2024) stats, vibecoded with Claude

Then sample conditioned on the previous word:

$$p(X_5 = x) = \frac{C(\text{my}, x)}{C(\text{my})}$$

$$p(X \mid my)$$



my mother and my mother

•••

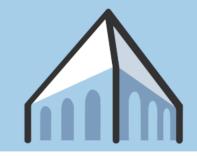
Infini-gram (Liu et al. 2024) stats, vibecoded with Claude

$$p(X_i = x) \approx \frac{C(x_{i-n+1}, \dots, x_{i-1}, x)}{C(x_{i-n+1}, \dots, x_{i-1})}$$

n=1		
never		
Comment		
has		
in		
•		
44		
t		
view		
С		
never		
Comment		
has in . "t		
view C		

$$p(X_i = x) \approx \frac{C(x_{i-n+1}, \dots, x_{i-1}, x)}{C(x_{i-n+1}, \dots, x_{i-1})}$$

n=1	n=2		
never	view		
Comment	-find		
has	а		
in	place		
•	of		
"	а		
t	human		
view	intelligence		
С	brief		
never	viewfind a		
Comment	place of a		
has in . "t	human		
view C	intelligence		
VIEW C	brief		

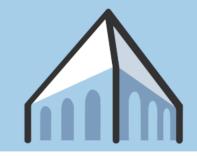


$$p(X_i = x) \approx \frac{C(x_{i-n+1}, \dots, x_{i-1}, x)}{C(x_{i-n+1}, \dots, x_{i-1})}$$

n=1	n=2	n=3	
never	view	were	
Comment	-find	е	
has	а	-colog	
in	place	-ical	
•	of	topics	
46	а	related	
t	human	Т	
view	intelligence	-weet	
С	brief	niet	
never	viewfind a	were	
Comment	place of a	ecological	
has in . "t	human	topics related	
view C	intelligence brief	to Tweet niet	

$$p(X_i = x) \approx \frac{C(x_{i-n+1}, \dots, x_{i-1}, x)}{C(x_{i-n+1}, \dots, x_{i-1})}$$

n=1	n=2	n=3	n=4	
never	view	were	dropped	
Comment	-find	е	her	
has	а	-colog	off	
in	place	-ical	at	
•	of	topics	her	
46	а	related	achiev	
t	human	Т	-ement	
view	intelligence	-weet	Canadian	
С	brief	niet	Resource	
never	viewfind a	were	dropped her off at	
Comment	place of a	ecological	her achievement	
has in . "t	human	topics related	Canadian	
view C	intelligence brief	to Tweet niet	1	



$$p(X_i = x) \approx \frac{C(x_{i-n+1}, \dots, x_{i-1}, x)}{C(x_{i-n+1}, \dots, x_{i-1})}$$

n=1	n=2	n=3	n=4	n=10
never	view	were	dropped	Liber
Comment	-find	е	her	-als
has	а	-colog	off	9
in	place	-ical	at	Third
•	of	topics	her	Part
46	a	related	achiev	-ies
t	human	Т	-ement	,
view	intelligence	-weet	Canadian	Left
С	brief	niet	Resource	_
never	viewfind a	were	dropped her off at	
Comment	place of a	ecological	her achievement	Liberals, Third
has in . "t	human	topics related	Canadian	Parties, Left-
view C	intelligence brief	to Tweet niet	Resource	

Sampled from Infini-gram (Liu et al. 2024)

As *n* increases, we get more fluent text

But also more sparsity: $p(X_{10} = -) = \frac{C(\text{Liberals, Third Parties, Left-})}{C(\text{Liberals, Third Parties, Left})} = \frac{417}{418}$ (in a corpus of 1.4T tokens!)

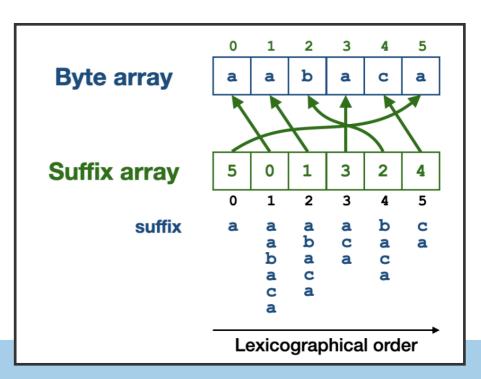
n=1	n=2	n=3	n=4	n=10
never	view	were	dropped	Liber
Comment	-find	е	her	-als
has	а	-colog	off	,
in	place	-ical	at	Third
•	of	topics	her	Part
"	а	related	achiev	-ies
t	human	Т	-ement	,
view	intelligence	-weet	Canadian	Left
С	brief	niet	Resource	_
never Comment has in . "t view C	viewfind a place of a human intelligence brief	were ecological topics related to Tweet niet		Liberals, Third Parties, Left-

Sampled from Infini-gram (Liu et al. 2024)

Storage Size

$$p(X_i = x) \approx \frac{C(x_{i-n+1}, \dots, x_{i-1}, x)}{C(x_{i-n+1}, \dots, x_{i-1})}$$

- For an *n*-gram language model, we need to store counts for:
 - All sequences of length n (\mathcal{V}^n)
 - All sequences of length n 1 (\mathcal{V}^{n-1})
- There are actually more efficient ways to "store" *n*-gram models! See infini-gram (Liu et al. 2024)



$$p(X_i = x) \approx \frac{C(x_{i-n+1}, \dots, x_{i-1}, x)}{C(x_{i-n+1}, \dots, x_{i-1})}$$

Missing data (sparsity)

- What if the count of the target n-gram is 0?
 - Solution: add a small number to the count for every ngram (aka "smoothing")

$$p(X_i = x) \approx \frac{C(x_{i-n+1}, \dots, x_{i-1}, x)}{C(x_{i-n+1}, \dots, x_{i-1})}$$

Missing data (sparsity)

- What if the count of the target n-gram is 0?
 - Solution: add a small number to the count for every ngram (aka "smoothing")
- What if our n-1-gram prefix has a count of 0?
 - Solution: condition on a shorter *n*-gram prefix (e.g., the previous *n*-2, or *n*-3, etc.) instead (aka "backoff")

$$p(X_i = x) \approx \frac{C(x_{i-n+1}, \dots, x_{i-1}, x)}{C(x_{i-n+1}, \dots, x_{i-1})}$$

Storage space

- What if the count of the target n-gram is 0?→ smoothing
- What if our n-1-gram prefix has a count of $0? \rightarrow backoff$
- We need to store the counts for all n-grams we've seen in our corpus at worst, exponential wrt $|\mathcal{V}|$

$$p(X_i = x) \approx \frac{C(x_{i-n+1}, \dots, x_{i-1}, x)}{C(x_{i-n+1}, \dots, x_{i-1})}$$

No notion of similarity

- What if the count of the target n-gram is 0?→ smoothing
- What if our n-1-gram prefix has a count of $0? \rightarrow backoff$
- ullet Storage is at worst exponential wrt $|\mathcal{V}|$
- Can't learn anything from the counts of n-grams containing similar words

$$p(\text{bike} \mid \text{I bought a}) \approx p(\text{bicycle} \mid \text{I purchased a})$$

$$p(X_i = x) \approx \frac{C(x_{i-n+1}, \dots, x_{i-1}, x)}{C(x_{i-n+1}, \dots, x_{i-1})}$$

Cannot condition on context with intervening words

- What if the count of the target n-gram is 0?→ smoothing
- What if our n-1-gram prefix has a count of $0? \rightarrow backoff$
- ullet Storage is at worst exponential wrt $|\mathcal{V}|$
- No notion of similarity

$$p(\text{Smith} \mid \text{Dr. Jane}) \approx p(\text{Smith} \mid \text{Dr. John}) \approx p(\text{Smith} \mid \text{Dr. } ---)$$

$$p(X_i = x) \approx \frac{C(x_{i-n+1}, \dots, x_{i-1}, x)}{C(x_{i-n+1}, \dots, x_{i-1})}$$

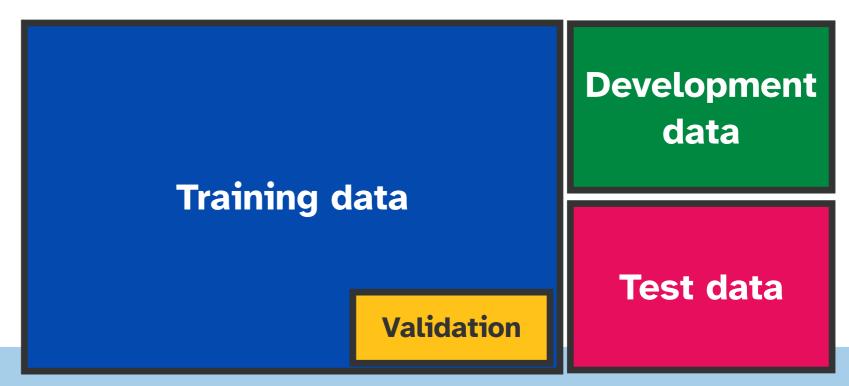
Without a big n, cannot handle long-distance dependencies

- What if the count of the target n-gram is 0?→ smoothing
- What if our n-1-gram prefix has a count of $0? \rightarrow backoff$
- ullet Storage is at worst exponential wrt $|\mathcal{V}|$
- No notion of similarity
- Intervening words

my cat Pepper, who is black with green eyes, likes to run on the cat wheel.

Evaluating a Language Model

- Let's say we have a language model that can give us a probability of any text $p_{\theta}(\overline{x})$
- We created this language model using a corpus $\mathcal{D} = \{\overline{x}_i\}_{i=1}^M$
- We care how well this generalizes to some held-out dataset \mathcal{D}'



Measures of Fit

• Likelihood: probability of the data under our model

$$\prod_{i=1}^{M} p_{\theta}(\overline{x}_i)$$

Measures of Fit

Likelihood: probability of the data under our model

$$\prod_{i=1}^{M} p_{\theta}(\overline{x}_i)$$

• Negative log likelihood (fixes float underflow) M

$$-\sum_{i=1}^{M} \log p_{\theta}(\overline{x}_i) = -\sum_{i=1}^{M} \sum_{j=1}^{N} \log p_{\theta}(x_j^i \mid x_1^i, \dots, x_{j-1}^i)$$

Measures of Fit

Likelihood: probability of the data under our model

$$\prod_{i=1}^{M} p_{\theta}(\overline{x}_i)$$

• Negative log likelihood (fixes float underflow) M

$$-\sum_{i=1}^{M} \log p_{\theta}(\overline{x}_i) = -\sum_{i=1}^{M} \sum_{j=1}^{N} \log p_{\theta}(x_j^i \mid x_1^i, \dots, x_{j-1}^i)$$

 Perplexity: inverse probability of data, normalized by number of tokens in the dataset

$$= \exp\left(-\frac{1}{\sum_{i=1}^{M} |\overline{x}^i|} \sum_{i=1}^{M} \sum_{j=1}^{N} \log p_{\theta}(x_j^i \mid x_1^i, \dots, x_{j-1}^i)\right)$$