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Generation

~ +
Given a language model p(X) c AKOW do we get a plausible
sequence out of it?

Autoregressive language model:

n
p(T) — Hp(ajz | L1y 75672—1)
1=1

We can sample directly from this approximation

I
want some
plausible text.

T ~ p(X)

We can adjust this distribution, then sample from it

We can try to find the most plausible sequence
in Pt



Sequential Generation /]\
p(T) = Hp(:z:@- T4, ... L)

e As we generate, we build our output sequence T, which
starts as an empty sequence T = { )



Sequential Generation /\\
p(T) = Hp(:z:@- T4, ... L)

e As we generate, we build our output sequence T, which
starts as an empty sequence T = { )

e At each step 7, we choose an item from the vocabulary ) by

performing some operation on the local probability
distribution p(XZ- | L1,y ,%—1) c AV



Sequential Generation /\\
p(T) = Hp(:z:@- T4, ... L)

e As we generate, we build our output sequence T, which
starts as an empty sequence T = { )

e At each step 7, we choose an item from the vocabulary ) by

performing some operation on the local probability
distribution p(XZ- | L1,y ,%—1) c AV

e Then, we append this to our running sequence T < T + (x;)



Sequential Generation /\\
p(T) = Hp(:z:@- T4, ... L)

e As we generate, we build our output sequence T, which
starts as an empty sequence T = { )

e At each step 7, we choose an item from the vocabulary ) by

performing some operation on the local probability
distribution p(XZ- | L1,y ,%—1) c AV

e Then, we append this to our running sequence T < T + (x;)

e If we ever choose EOS, we stop generation



Sequential Generation /]\
p(T) = Hp(:z:@- T4, ... L)

e As we generate, we build our output sequence T, which
starts as an empty sequence T = { )

e At each step 7, we choose an item from the vocabulary ) by

performing some operation on the local probability
distribution p(XZ- | L1,y ,%—1) c AV

e Then, we append this to our running sequence T < T + (x;)
e If we ever choose EOS, we stop generation

e Main point: generation methods differ wrt the operation
they performon p(X; | z1,...,2;_1)



Recap: Ancestral Sampling ﬁ
p(T) = Hp(% L1, .., T 1)

P
Operation: sample directly from p(X; | 1,...,2;_1) M n
_ Bb
— D X1 100
T = (s , P
number = random (0, 100) 37.5 75»
. S
number 1s 65 = 50
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Recap: Ancestral Sampling m
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Recap: Ancestral Sampling m
p(T) = Hp(% L1, .., T 1)

Operation: sample directly from  p(X; | x1,.. ., Ti 1)
— 3 i | T1yeen, i—1) 100
L — <p un OS> 100
pun 75 7S
% 50 50
25
25
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Operation: modify the logits
before computing probabilities

Sneak peek: computing probabilities over wordtypes using
pretty much any modern language model

e Score each wordtype independently
s(w) = f(w | z1,...,2;,_1;0) <mlogits

e Renormalize using softmax
v y) = exp(s(w))
* ) 1— T
D wrey €Xp(s(w’))

p(Xs =w | x,..




Adjusting the Temperature

Operation: modify the logits
before computing probabilities

s(w) = f(w | x1,...,2;_1;0) <mlogits
v ) = exp(s(w))
o waev exp(S(w’))

p(X; =w | xq,..

Temperature parameter controls the
“smoothness” of this distribution:

L i)/
T Zw,evexp(s(wl)/T)

p(X; =w | xq,..



Adjusting the Temperature /.N

Operation: modify the logits

before computing probabilities ﬁv
S(w) :f(w ‘xl,...,ﬂ?i_l;e) «lcg]ts —
exp(s(w)/7)
X.=wlxi.,....0,_1) =
p( 1 ‘ 15 y L7 1) Zw/ev exp(s(w’)/T)
e T = 1. no changes to the probability distribution 0 p(Xl)
75
= 59
<Y
) -_Il
0
b h ©




Adjusting the Temperature /.N

Operation: modify the logits

v
before computing probabilities @""
, o
s(w) = f(w | x1,...,2;,_1;0) <mlogits ’
exp(s(w)/7)
p(Xs=w|x,...,2_1) = ,
D wrey €xp(s(w’)/7)
e T = 1:no changes to the probability distribution {00 p(Xl)
e T — O:relative probability assigned to highest- 75
probability item in distribution increases =
= 50
e in practice, setting a temperature of © =
recovers “argmax”, putting all of the mass on 29
the highest-probability item 0
b h P



Adjusting the Temperature /.N

Operation: modify the logits

V
before computing probabilities @""
, o}
s(w) = f(w | x1,...,2;,_1;0) <mlogits ’
exp(s(w)/T)
p(Xs=w|x,...,2_1) = ,
D wrey exp(s(w’)/T)
e T = 1. no changes to the probability distribution {00 p(Xl)
e T — O:relative probability assigned to highest- 75
probability item in distribution increases =
S 50
2,
e T — oo: distribution becomes more and more 25
uniform

0



Adjusting the Temperature /.B

At

)J1°r

Operation: modify the logits
before computing probabilities

s(w) = f(w | x1,...,2;,_1;0) <mlogits

exp(s(w)/7)
> wrey eXp(s(w’)/T)

p(Xz — W ‘ xl)"')aj"i—l) —

lemperature: 0.1
06 - =

05 4
04 -
01

02

N l
. 6 7 &g

Harshit Sharma



Adjusting the Temperature /\\

Operation: modify the logits 7,:; v |
before computing probabilities @ = '
|

s(w) = f(w | x1,...,2;_1;0) <mlogits
exp(s(w)/T)
D wrey exp(s(w’)/T)

Temp = 0 Temp = 5
nce upor nce upon a tir €, tnere was a you

n a time, there was a little

p(X;=w|x1,...,05-1) =

little [ 6%
beautiful i 6%
5%

small [ 5%
king | 5%

m; 5%
kingdom [ 5%

|
|
i
|
|
|
v 0%
y 4%
s ] 4%
t 4%

3bluelbrown



Operation: modify the logits
before computing probabilities

s(w) = f(w | x1,...,2,_1;0) <mlogits
v y) = exp(s(w)/T)
o Zw’EV exp(S(w’)/T)

o Temperature allows us to control the entropy of the output
distribution without changing its relative ranking of items

p(X; =w |z, ..

e Higher temperature: closer to a uniform distribution

e Lower temperature: “peakier” distribution (in the limit, gives all
probability mass to the most probable item)



Operation: find arg max p(T)
zeVT

e Why is this hard?




Finding the Most
Probable Sequence

Operation: find arg max p(T)
zEVT

e Why is this hard?

e An approximation: greedy “sampling”

r; < argmaxp(X; | z1,...,2;_1)
rxeV

e Just choose the most probable wordtype at each
generation step (no random sampling needed)



Operation: choose I; <— arg meaécp(Xz- X1, ..., 1)
XL

f=</o

HEE
O 30O

p(Xl) 100 [ o

50




Finding the Most
Probable Sequence

Operation: choose x; < argmax p(X; | x1, ..

rel

f:<pu

p(Xz | z1 = p)
100

73

25

N

. 7xi—1)

100
75
50

25




Finding the Most
Probable Sequence

Operation: choose I; — arg méaécp(Xi X1, ..., X 1)
XL

T = <pug

p(X3 | (p,u)) 100

75
50

25




Finding the Most
Probable Sequence e
Operation: choose I; — arg méaécp(Xi X1, ..., X 1)

f — <pugiEOS>
pug p(X,L | ,flj'l,...,xi—l) 100
75

50

25

S EOS




Finding the Most
Probable Sequence

Operation: choose I; <— arg ma&cp(Xi X1, ..., X 1)
T C

e Why isn’t this guaranteed to get us the highest-probability sequence?

e A better approximation for global argmax: beam search

e During generation, we maintain a “beam” of n sequences instead of just
one

e At each generation step J,
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Finding the Most
Probable Sequence

Operation: choose I; <— arg ma&cp(Xi X1, ..., X 1)
T C

e Why isn’t this guaranteed to get us the highest-probability sequence?

e A better approximation for global argmax: beam search

e During generation, we maintain a “beam” of n sequences instead of just
one

e At each generation step J,

e We select the n most likely next tokens Xifor each prefix, and create
n more sequences

e Then we look at all the n? sequences so far, and discard all but the n
most likely sequences

e At the end, we select the sequence that has the highest probability
among the set






Beam Search, n = 3

p(X1)
the

O

0.4

in
O

0.3

and

O

0.2

Beam

Discard all but the
top 3 continuations

Prefix Probability
the 0.4
n 0.3
and 0.2




Beam Search, n = 3

p(X1) p(Xs2 | 1 = the) Continue with beam
the list item #1 as prefix
O
0.X 0.3
in look
O O
0.3 0.2
and pavents
O O
0.2 0.1
vighlight
(O
0.05
Prefix Probability
seat % the 0.04
O 8 in 0.02
0.05 and 0.02




Beam Search,n =3 /,

p(X1) p(Xs2 | 1 = the) Discard all but the
the list top 3 continuations

Prefix Probability
the list 0.4*0.3
g 8 the look 0.3*0.2
QO 4 |the parents 0.2*0.1
m &
ot
5
53
@
c Prefix Probability
8 the 0.04
' 0.02
m in
and 0.02




Beam Search,n =3 /,

p(X1)p(Xs | 21 = in) Continue with beam
tge the item #2 as prefix

0.4 15
Prefix Probability
the list 0.4*%0.3
E ¥ [the look 0.3*%0.2
0 0.1 ] o
O 4 |the parents 0.2*0.1
m ©
and this - O
ST
0.2 .05 S 8
ich O
02
c Prefix Probability
tNeir @ |the 0.04
Q |; 0.02
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0.0z and 0.02




Beam Search, n = 3

p(X1)p(Xs | 1 = in)
the the

O

0.4

Current Beam
Candidates

Beam

Discard all but the
top 3 continuations

Prefix Probability
the list 0.4*%0.3
the look 0.3*%0.2
the parents 0.2*%0.1
in the 0.3*0.15
in a 0.3*0.1
in this 0.3*0.05

Prefix Probability
the 0.04
n 0.02
and 0.02




Beam Search, n = 3

11
p(Xl) p(X2 | Tr1 = and) Continue with beam
the the item #3 as prefix
O

0.4 . 0
i Prefix Probability
the list 0.4*%0.3
E ¥ |the look 0.3*0.2
0.3 .2 ® q
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m 0.3*0.15
an dog o O |in the .3%0.
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Beam Search, n = 3

p(X1) p(Xs | x1 = and)

the the

O

0.4 .6

n

O

0.3 .2

an dog
O

0.2 0.2

Current Beam
Candidates

Beam

Discard all but the
top 3 continuations

Prefix Probability
the list 0.4*%0.3
the look 0.3%0.2
the parents 0.2*%0.1
in the 0.3*0.15
in a 0.3*0.1
in this 0.3*0.05
and the 0.2*%0.6
and a 0.2*%0.2
and dog 0.2*%0.2

Prefix Probability
the 0.04
n 0.02
and 0.02




Beam Search, n = 3

Current Beam
Candidates

Beam

Compute probabilities

of all candidates

Prefix Probability
the list 0.12
the look 0.06
the parents 0.02
in the 0.05
in a 0.03
in this 0.02
and the 0.12
and a 0.04
and dog 0.04

Prefix Probability
the 0.04
n 0.02
and 0.02




Beam Search,n =3 /,

Refresh the beam
with top n candidates

Prefix Probability

the list 0.12

% 3 the look 0.06

O 4= |the parents 0.02
m ® .

w 'O [inthe 0.05

5 'é in a 0.03

= @ |in this 0.02

O © |and the 0.12

and a 0.04

and dog 0.04

Prefix Probability

% the list 0.12

8 the look 0.06

and the 0.12




Beam Search, n = 3

11
p(T) p(X3 | T = the list) Keep generating
the list of with new beam
0.1 0.03
Prefix Probability
the loo
O A the list of 0.004
0.06 02 g 8 the list goes 0.002
QO = [the listis 0.002
m @®©
and the . e,
O g O
0.12 0.02 :t: 8
@
Prefix Probability
% the list 0.12
8 the look 0.06
and the 0.12




Beam Search, n = 3

p(Z)  p(Xs | T = the look)

the list of
O
0.12 3
the lo -out
O

.2

0.06

and the

O

0.12 0.1

Current Beam
Candidates

Beam

Keep generating
with new beam

Prefix Probability
the list of 0.004
the list goes 0.002
the list is 0.002
the look of 0.018
the lookout 0.012
the look on 0.006

Prefix Probability
the list 0.12
the look 0.06
and the 0.12




Beam Search, n = 3

p(r)  p(X3 | T = the look)

the list two
O
0.12 .2
the look reation
O
0.06 04

and buildings
O
0.12 0.02

Current Beam
Candidates

Beam

Keep generating
with new beam

Prefix Probability
the list of 0.004
the list goes 0.002
the list is 0.002
the look of 0.018
the lookout 0.012
the look on 0.006
and the two 0.024
and the creation 0.005
and the buildings 0.002

Prefix Probability
the list 0.12
the look 0.06
and the 0.12




Beam Search, n = 3

p(T)  p(X3|ZT = the look)

the list two
O
0.12 .2
the look reation
O
0.06 04

and buildings
O
0.12 0.02

Current Beam
Candidates

Beam

Refresh the beam

with top n candidates

Prefix Probability
the list of 0.004
the list goes 0.002
the list is 0.002
the look of 0.018
the lookout 0.012
the look on 0.006
and the two 0.024
and the creation 0.005
and the buildings 0.002

Prefix Probability
the look of 0.018
the lookout 0.012
and the two 0.024




Beam Search, n = 3

e How do we know when to stop?

e When all of the 1items in the beam have EOS (we don't

expand these prefixes, just keep them around for the end)

e Or, when we've reached a maximum sequence length

e Let's say we're done sampling at this point

e We’'ll select the sequence with the highest probability in the

beam

Beam

Prefix Probability
the look of 0.018
the lookout 0.012
and the two 0.024
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Beam Search, n = 3

How do we know when to stop?

e When all of the 1items in the beam have EOS (we don't
expand these prefixes, just keep them around for the end)

e Or, when we've reached a maximum sequence length
Let’s say we're done sampling at this point

We’'ll select the sequence with the highest probability in the
beam

What if our sequences have different lengths?

Length _ 1
normalization: p(T) T Zlogp(xi | T1,. ., Ti—1)




Masking Out Wordtypes /]\

e Should we always try to
approximate the argmax?



Masking Out Wordtypes m%

Beam Search Text is Less Surprising

-—

e Should we always try to z " ﬂ ﬂ
approximate the argmax? 8 o
0.2
0 | U I I
0 20 40 60 80 100
® Maybe nOt! Timestep Beam Search
Beam Search Human

e Argmax produces repetitive,
less diverse, and overall too-

...to provide an overview of the ...which grant increased life span
current state-of-the-art in the field and three years warranty. The
of computer vision and machine  Antec HCG series consists of five

probable output sequences

e What's missing?

learning, and to provide an
overview of the current
state-of-the-art in the field of
computer vision and machine
learning, and to provide an
overview of the current
state-of-the-art in the field of
computer vision and machine
learning, and to provide an
overview of the current
state-of-the-art in the field of
computer vision and machine
learning, and...

models with capacities spanning
from 400W to 900W. Here we
should note that we have already
tested the HCG-620 in a previous
review and were quite satisfied
With its performance. In today's
review we will rigorously test the
Antec HCG-520, which as its model
number implies, has 520W capacity
and contrary to Antec's strong
beliefs in multi-rail PSUs is

equipped...

Holtzman et al. 2019




Masking Out Wordtypes

e Should we always try to
approximate the argmax?

e Maybe not!

e Argmax produces repetitive,

Word Frequency Distribution - Linear Scale

less diverse, and overall too- | =
probable output sequences | « .
3:21
e What's missing? el
@
e Long tail!

(I) 560 1OI00 15I00 20I00 2500




Masking Out Wordtypes

Operation: € sampling

e Identify the set of n tokens & such that V x € &,
p(il’f L1y - 7$’i—1) > €

e Set the probabilities of all but these tokens to ©

e Renormalize by dividing remaining probabilities by

ZP(Xz' | T1y. ., Tim1)

a’; Eg 5000 ',‘:'4.’ A——

Word Freque

ncy Distribution - Linear Scale

40001 & | s

> 3000
(6]
C
9]
3
(o
o
[
2000
&
10001 &
> o>
0 & 'o@c &
...... 2000 2500




Masking Out Wordtypes

Operation: top-k sampling

e Identify the set of k tokens K that have the highest probabilities
under P(X; | o1, ..., mi—1)

e Set the probabilities of all but these tokens to ©

e Renormalize by dividing remaining probabilities by

ZP(Xv; | T1y. ., Tim1)

e ey
CU E IC 5000 - ‘ /
3

Word Frequency Distribution - Linear Scale

40001 ¥ | s

10004 %

1000 1500 2000 2500




Masking Out Wordtypes

Operation: top-p (nucleus) sampling

Identify the set of n tokens P that have the highest probabilities
under p(Xz' ‘ L1y ;llfz’—l) and their cumulative probability is p

e Set the probabilities of all but these tokens to ©

e Renormalize by dividing remaining probabilities by

ZP(XZ | $1,...,Q3‘r,;_1):p

; e "-"';; .
reP so0{ § | ]
3

Word Frequency Distribution - Linear Scale

40001 % | & €

1000 { %

1000 1500 2000 2500




Masking Out Wordtypes

Operation: constrained decoding

e For some tasks, we have additional information about what
wordtypes can or cannot be next

e E.g, in code generation, I can’t generate more ) than I
have (

e While modern LLMs can learn these patterns from data at
scale, it can sometimes still be useful to constrain our
output space



Masking Out Wordtypes

Operation: constrained decoding

e For some tasks, we have additional information about what
wordtypes can or cannot be next

e E.g, in code generation, I can’t generate more ) than I
have (

e While modern LLMs can learn these patterns from data at
scale, it can sometimes still be useful to constrain our
output space

¢ Similar to before: given a set of possible continuations C € V
we will set the probabilities of all other tokens to O, then

renormalize using E p(X; | z1,...,2i_1)
xeC



