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Why 1s Syntax Still Relevant?

Learnability of humanlike syntactic structure

(formal expressivity of architectures, or learnability from data)
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Why 1s Syntax Still Relevant? /\\

Serves as a good inductive bias in low-data settings

o Relationship between scaling laws and hierarchical
Pre-training on formal languages compositionality of human language
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Compositional Semanticsmm

e How do we represent sentence meaning?
e How can we get from word meaning to sentence meaning?

e What are some applications of formal semantics in NLP?



Compositional Semantics/]\

e Lexical semantics: we can get word meanings

e Denotational semantics: tokens are references
to things in the real world

e Ontologies: tokens are references to nodes in
some knowledge graph

e Word embeddings: tokens are represented by
continuous vectors

everyone likes Pepper
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Compositional Semantics

e Lexical semantics: we can get word meanings

e Denotational semantics: tokens are references
to things in the real world

e Ontologies: tokens are references to nodes in
some knowledge graph

e Word embeddings: tokens are represented by
continuous vectors

e Syntax: we can determine what sequences of word
types are possible or not possible in a language by
modeling latent structure

e Constituency grammar aka phrase structure
grammar aka context-free grammar

e Dependency grammar

Main challenge of semantic parsing:
how do we get a single representation
of the entire sentence’s meaning from
(a) the meanings of its words, and

(b) their order and latent structure?
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Recap: Combinatory Categorial Grammar /m
(CCG) 11

e Another way of representing a constituency grammar:
bottom-up

e Elements of a CCG:
e Lexical items (wordtypes)

e Each paired with a syntactic type (= nonterminal or
composition thereof)

the: NP/N  dog:N  John: NP  bit: (S\INP)/NP

the dog bit John

Example from Wikipedia



An Analogy: Code Interpreters /‘\

Task: evaluate the expression:

3+5*6

® ®» 6 O 6



An Analogy: Code Interpreters /‘\

Task: evaluate the expression:

3+5*6

Step 1: parse




An Analogy: Code Interpreters /\\

Task: evaluate the expression:

3+5*6

h (30)
def j(y):

return 30 +¥  Step 2: evaluate

def g(y):
return 6 * y

® ©® 6

data type
def h(x) : def f(x):
: def j(y): def g(y):
mean]ng 3 return x + y S return x * y 6

return j return g



An Analogy: Code Interpreters /\\

Task: evaluate the expression:

3+5*6

h (30)
def j(y):

return 30 +¥  Step 2: evaluate

def g(y):
return 6 * y

® ©® 6

data type
def h(x) : def f(x):
: def j(y): def g(y):
mean]ng 3 return x + y S return x * y 6

return j return g



CCG and Lambda Calculus /‘\

Lambda expressions:

By 309 def f({args}):
{body}
A {args} . {body}

data type

meaning 3 5 6



CCG and Lambda Calculus /‘\

Task: evaluate the expression:
(AN z , v . 5 * vy + z)(3)

3+5*x

(A x , 2z . x+t z)(ANy . O * v)
*y + z

®

data type
meaning 3 5 X



CCG and Lambda Calculus /‘\

def f(y):
return 5 * y + 3

data type

meaning 3 5 X



Truth-Conditional Semantics

e In the context of their use, statements are either true or
false, 1.e., they have the type t (aka, bool in python)

e Let's call this context a world w

e We'd like the outcome of our semantic parsing to be a
some that can evaluate to true or false (i.e.,, )} — [(), 1])

AL e

[the cat is on the table|“*  [the cat is on the table]"?




Truth-Conditional Semantics ¢,

e In the context of their use, statements are either true or
false, 1.e., they have the type t (aka, bool in python)

e Let's call this context a world w

e We'd like the outcome of our semantic parsing to be a
some that can evaluate to true or false (i.e.,, )} — [(), 1])

AL e

the cat is on the table ﬁ some function that can be evaluated to
give us the denotation in an arbitrary world




Lambda Calculus
for Natural Language i
CCG for semantic parsing:
e Lexical items (wordtypes)

e Each paired with a syntactic type

e And paired with a lambda expression and its semantic type

everyone likes Pepper

Syntactic type

Semantic type

A-expression
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Example Parse

Pepper

Syntactic type: noun phrase
Semantic type: entity

everyone

Syntactic type NP

Semantic type e

A-expression Pepper




Example Parse m%

everyone likes Pepper

NP
e

everyone

Syntactic type NP

Semantic type e

A-expression Pepper




Example Parse 7
A X, v . likes (y, x)

Syntactic type: expects a noun phrase to follow, and a noun phrase to precede
Semantic type: expects an entity as its first argument, produces a new function

everyone
NP
Syntactic type (S \ )/ NP
NP
Semantic type e L5 <e - t> e

A-expression

Pepper




Example Parse

everyone likes Pepper
(S \ NP) / NP NP

everyone
NP

Syntactic type (S \ )/ NP
NP

Semantic type e L5 <e - t> e

A-expression

Pepper




everyone likes Pepper

(S \ NP) / NP NP
e - < e - t > e
A x, vy . likes (y, x) Pepper
>
S \ NP
e - t

Ay . likes (y, Pepper)




Example Parse

AN .V x

(person (x)

- f(x))

N

everyone
S \ NpP) /
Syntactic type S / (S \ NP) ( ) NP
NP
Semantic type <e 5t 5 tle 5 <e 5 t> e
, Af LV ox A X, V likes
A-expression (person (x) - (y Pepper
£(x)) ’




Example Parse

everyone
S / (S \ NP)
< e >t > ¢t

likes
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f(x))

everyone
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everyone likes Pepper

S / (S \ NP) (S \ NP) / NP NP
< e 5t > ¢t e - < e - t > e
A f .V x A x, vy . likes (y, x) Pepper
(person(x) - £(x)) >
P S \ NP
e - t
Ay . likes (y, Pepper)
>
S
t

Af .V x (person(x) - £(x)) (A y . likes (y, Pepper))
V x (person(x) - (A y . likes (y, Pepper)) (x)

V x (person(x) - likes (x, Pepper))




Sentence Meaning mm

V x (person(x) — likes (x, Pepper))

e \What can we do with our sentence now that it's a function?

e We can check its meaning against some world!

entities




Sentence Meaning mm

V x (person(x) — likes (x, Pepper))

e What can we do with our sentence now that it's a function?
e We can check its meaning against some world!

e \We can check use it to make inferences!

person (Alane)
A
V x (person(x) — likes (x, Pepper))

- l1kes (Alane, Pepper)



Formal Semantics

Logical operators, like v, A, and -
Pepper is clever and curious

Quantifiers like v and 3
Some cats like water

Relationships between functions = and &
Squares are rectangles (Vx (square (x) = rectangle(x)))

Verbs can have tenses, and can be modified with adverbs

We can talk about beliefs others have

Some combinations of meanings are nonsensical (unevaluable)
green ideas

Sentences aren't just statements — sometimes they are commands,
questions, etc.

Sentences exist in the context of previous sentences and their meanings



Modern Formal Semantics ¢,

e In NLP, nobody is really mapping from sentences to
lambda calculus representations anymore

e However, many of our problems still take the form of
mapping from language to some meaningful structured
representation



Modern Formal Semantics /‘\

Planning (e.g., task specification to PDDL)

[DOMAIN]
(define (domain blocksworld-4ops)
(:requirements :strips)
(:predicates (clear ?7x)
(ontable 7x)
(handempty)
(holding 7x)
(on ?7x ?7y))

(:action pick-up
:parameters (7ob)
:precondition (and (clear 7ob) (ontable 7ob) (handempty))
:effect (and (holding 7ob) (not (clear 7ob)) (not (ontable 7ob))
(not (handempty))))

(:action put-down
:parameters (7ob)
:precondition (holding 7?ob)
:effect (and (clear ?7ob) (handempty) (ontable ?ob)
(not (holding 7ob))))

(:action stack
:parameters (7ob 7underob)
:precondition (and (clear 7underob) (holding ?7ob))

:effect (and (handempty) (clear 7ob) (on 7ob 7underob)
(not (clear ?underob)) (mot (holding ?7ob))))

(:action unstack
:parameters (7ob ?underob)
:precondition (and (on 7ob 7underob) (clear 7ob) (handempty))
:effect (and (holding 7ob) (clear 7underob)

(not (on ?ob ?underob)) (not (clear ?ob)) (not (handempty)))))

Example from Valmeekam et al. 2025

the table has six blocks on it, arranged into a tower
that, from bottom to top, has the following blocks: a,
c, e f, b, and d. rearrange the tower so that their
order i1s, from bottom to top, e, f, a, ¢, b, d.

[QUERY PROBLEM]
(define(problem BW-rand-6)
(:domain blocksworld-4ops)
(:objects abcdef)
(:init

(handempty)

(ontable a)

(on b £)

(on c a)

(on d b)

(on e ¢)

(on f e)

(clear d)

)
(:goal
(and

(on a f)
(on b ¢)
(on c a)
(on d b)
(on £ e))
)
)
)




Modern Formal Semantics

Coding

def

def

def

def incr_list(l:

ist):
"""Return list with elements incremented by
>>> incr_list([1, 2, 31)

(2, 3, 4]

>>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123])

[6, 4, 6, 3, 4, 4, 10, 1, 124]

return [i + 1 for i in 1]

solution(lst):

"""Given a non-empty list of integers, return the sum of all of the odd elements
that are in even positions.

Examples

solution([5, 8, 7, 1]) ==>12
solution([3, 3, 3, 3, 3]) ==>9
solution([: 13, 24, 321]) ==>0

nnn

return sum(1st[i] for i in range(0,len(lst)) if i % 2 == 0 and 1st[i] % 2 == 1)

encode_cyclic(s: str):

nnn

returns encoded string by cycling groups of three

nnn

characters.

groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
groups = [(group[1:] + group[@]) if len(group) ==

return "".join(groups)
decode_cyclic(s: str):

takes as input string encoded with encode_cyclic function.

wnn

Returns

groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)1]

groups = [(group[-1] + group[:-11) if len(group) == 3 else group for group in groups]

return "".join(groups)

3 else group for group in groups]

decoded string

g.

>
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SWE-Bench, Jimenez et al. 2023

Large and Realistic Database Values

P'\ What is the average salary of the worst performing managers?
[§

SELECT AVG(CAST(REPLACE(SUBSTR(T1.salary, 4), ', ") AS REAL)) FROM
employee AS T1 JOIN position AS T2 ON T1.positionID = T2.positionID
WHERE T1.performance = 'Poor' AND T2.positiontitle = 'Manager'

Reasoned Database:

( Employees |
0000 Milgrom Santa US857,500.00
22 Adams Sandy US$19,500.00
6543 Wood Emily USS69,000.00

External Knowledge Reasoning

=

List account id who chooses;weekly issue issuance|statement?
T f

External Knowledge
“POPLATEK TYDNE  stands
for weekly issuance.
SELECT account_id FROM account WHERE account.frequency @
=‘POPLATEK TYDNE' ;

.3 How many accounts are:eligible for loansiin New York City?

External Knowledge:

The condition of loans is that
the type of the account should
be “OWNER”.

SELECT COUNT(*) FROM account WHERE account.type
= ‘OWNER’ AND city = ‘NY’;

m Among the coaches who have served more than 2 NBA teams, during
T which coach’s period of coaching, a team has the least numbers of

games lost in the post-season games?

SQL,: normal semantic parser Run time: 22.4s

SELECT coachID FROM coaches WHERE IgID="NBA’ AND post_wins !=0
AND post_losses =0 AND coachiD IN

(SELECT coachID FROM coaches WHERE IgID="NBA’ GROUP BY coachID
HAVING COUNT(tmID)>=2) ORDER BY post_losses ASC LIMIT 1;

SQL,: efficient semantic parser Run time: 4.0s
SELECT coachID FROM coaches WHERE IgID="NBA’ AND post_wins !=0

AND post_losses !=0 AND EXISTS (SELECT 1 FROM coaches AS coachesl
'WHERE (coaches1.IgID="NBA’) AND (coaches.coachlD=coachesl.coachID)

GROUP BY coaches1.coachID HAVING count(coaches1.tmiID) >= 2
ORDER BY NULL ) ORDER BY coaches.post_losses ASC LIMIT 1

HumanEval, Chen et al. 2021

BIRD, Li et al. 2023




Modern Formal Semantics /‘\

Reasoning

I Theorem  For every integer n such that n > 1, n can be expressed as the product of one or more primes, uniquely up to the order in which they appear.

I Proof In Integer is Expressible as Product of Primes, it is proved that every integer n such that n > 1, n can be expressed as the product of one or more primes.
! In Prime Decomposition of Integer is Unique, it is proved that this prime decomposition is unique up to the order of the factors.
b e e e e e e e e e e e e e e e e o o o e e e e e e e e e e e e e e e e e e e e e e e e e e = = = = e e e e e e e e e e = = = = = = e e e e e e = = = = = = = = = e = 1
T
: I Proof Tree n: N, 1: List N, h:: prod L =n, hz: ¥ p € 1, Prime p Local Context :
| Premises theorem perm_of_prod_eq_prod : V {l1. 1 : : F 1 ~ factors n + Goal "
1 List M}, li.prod = lz.prod -» (V¥ p € 1., fine' f d d |
| Prime p) » (V p € 12, Prime p) - Perm 11 1o | retin® R - - |
: : | l l 1
I
. I ee “ee e
1 theorem prime_of_mem_factors {n : N} : V {p - ; ; 1
" . N}, (h: p € factors n) - Prime p : + prod 1 = prod (factors n) VY p€T1l, _root_.Prime p VY p € factors n, _root_.Prime p |
! I lrw [h1] lsimp_rw [« prime_iff] lsimp_rw [« prime_iff] |
! 1
1
I 1 + n = prod (factors n) VY p €1l Prime p + V p € factors n, Prime p :
1
I Theorem theorem factors_unique {n : N} {1l : List N} | lrefine' (prod_factors _).symm lexact h2 exact fun p => 1
! (ha : prod 1. =n) (h2 : V p €1, Prime p) : prime_of_mem_factors |
! 1 ~ factors n := by | V I
1 " Fn#0 \/ 1
: Proof refine' perm_of_prod_eq_prod _ _ 1 lrintro rfl !
« rw [h1] 1 '
: refine' (prod_factors _).symm | ni—N, hit prod 1 =0, - 1
. rintro rfl | - False "
" rw [prod_eq_zero_iff] at ha 1 lrw [prod_eq_zero_iff] at h: :
. exact Prime.ne_zero (hz2 @ hi) rfl 1
. - simp_rw [« prime_iff] 1 hi: @ €1, -
" exact ha 1 + False . . .
! . simp_rw [« prime_iff] I l Py —— Question: If a > 1, then the sum of the real solutions of ya — va +x = x is equal to
| exact fun p => prime_of_mem_factors 1 e A
| ! v Response: <think>
I . .
------------------------------ t--------------------- Tosolve the equation ya — va + x = x, let’s start by squaring both - - -

Li et al. 2@24 ( a—\/m)2=x2 — a-+a+x=x2

Rearrange to isolate the inner square root term:
(a-x)?=a+x = ®-2a*+ (P’ =a+x = x*-2ax* -x+(a*-a) =0

Wait, wait. Wait. That’s an aha moment I can flag here.

Let’s reevaluate this step-by-step to identify if the correct sum canbe - - -
We started with the equation:
Va-+vVa+x=x

First, let’s square both sides:
a-Va+x=x* = Va+x=a-x
Next, I could square both sides again, treating the equation: - - -
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