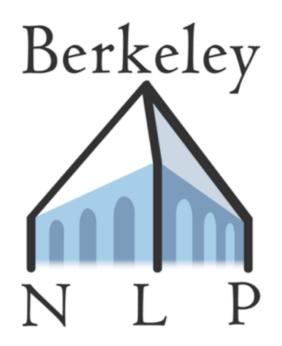
# Linguistics: Compositional Semantics



EECS 183/283a: Natural Language Processing

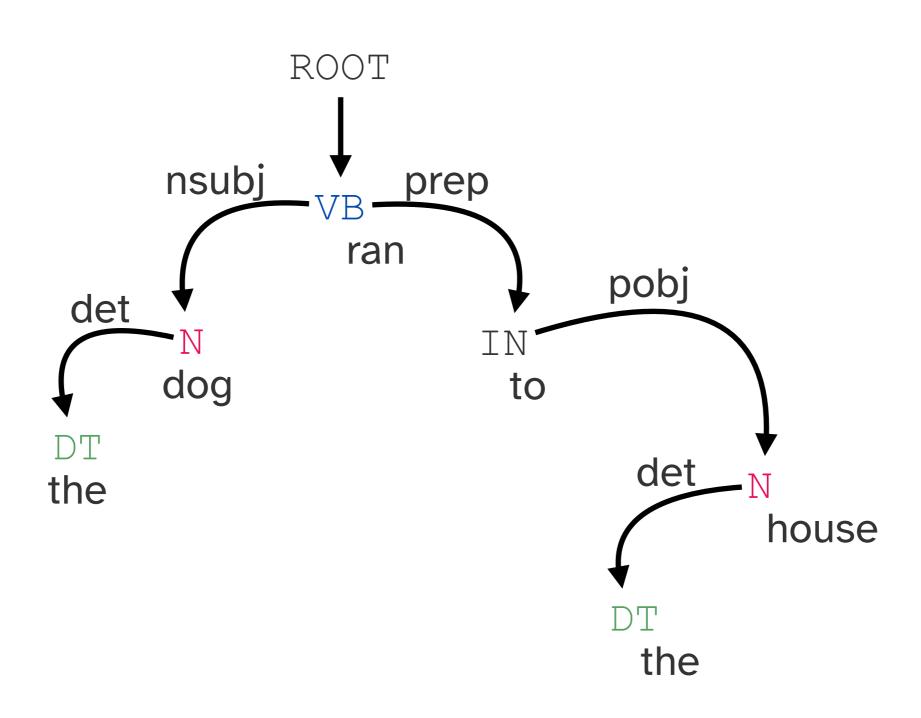
# Recap: Dependency Parsing



the dog ran to the house

### Recap: Dependency Parsing

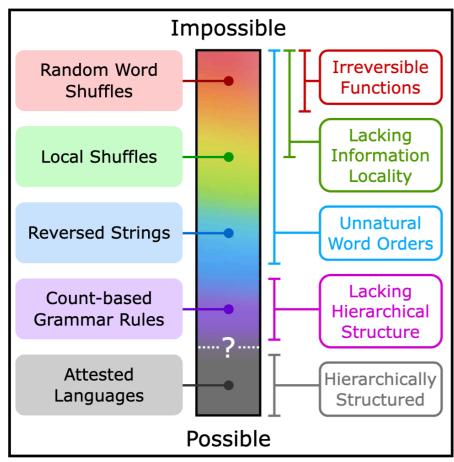




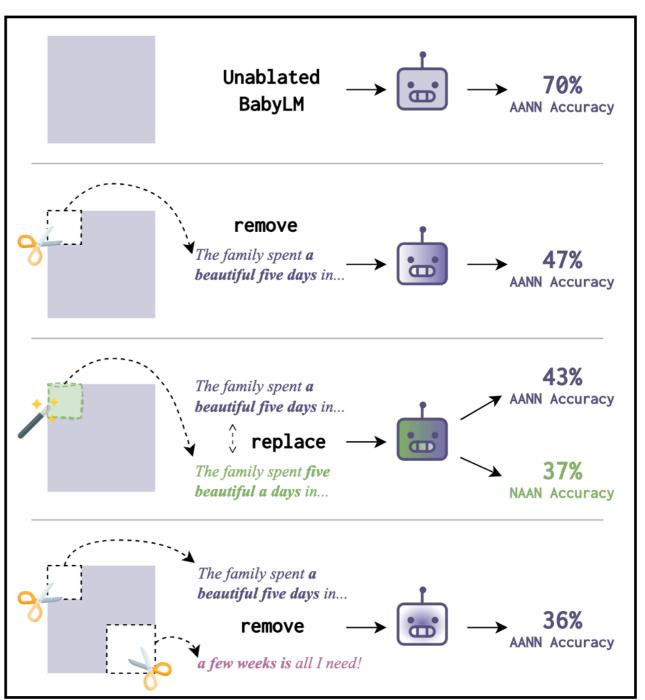
#### Why is Syntax Still Relevant?



Learnability of humanlike syntactic structure (formal expressivity of architectures, or learnability from data)



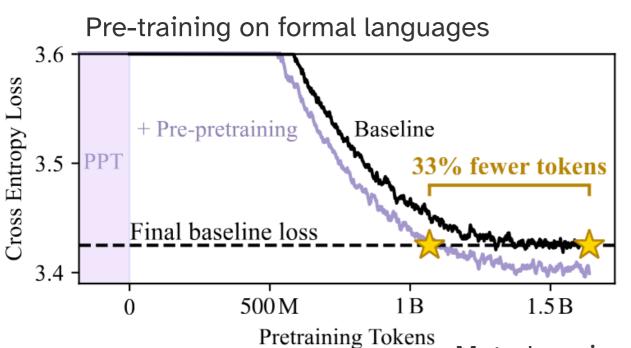




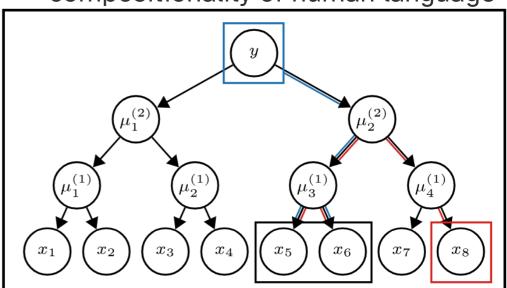
#### Why is Syntax Still Relevant?



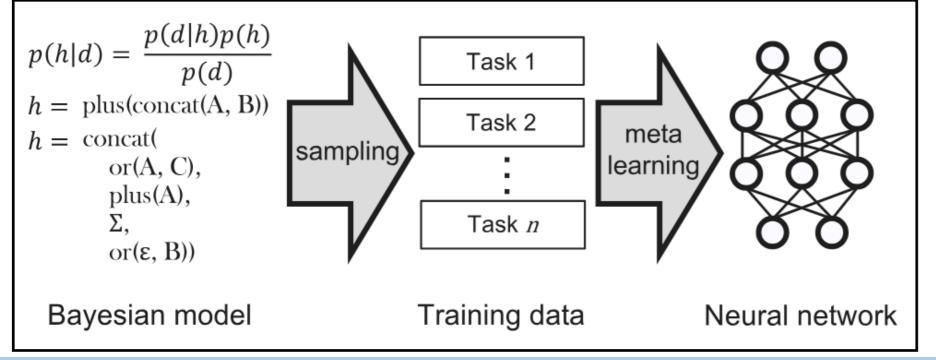
#### Serves as a good inductive bias in low-data settings



Relationship between scaling laws and hierarchical compositionality of human language



Meta-learning with formal languages



# Compositional Semantics



- How do we represent sentence meaning?
- How can we get from word meaning to sentence meaning?
- What are some applications of formal semantics in NLP?

# Compositional Semantics



- Lexical semantics: we can get word meanings
  - Denotational semantics: tokens are references to things in the real world
  - Ontologies: tokens are references to nodes in some knowledge graph
  - Word embeddings: tokens are represented by continuous vectors



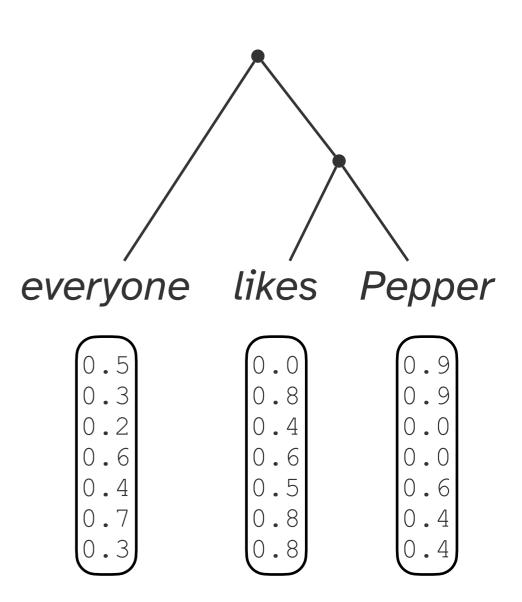
| everyo                                 | ne | likes                                  | Pepper                                 |
|----------------------------------------|----|----------------------------------------|----------------------------------------|
| 0.5<br>0.3<br>0.2<br>0.6<br>0.4<br>0.7 | 10 | 0.0<br>0.8<br>0.4<br>0.6<br>0.5<br>0.8 | 0.9<br>0.9<br>0.0<br>0.0<br>0.6<br>0.4 |
| [0.3]                                  |    | 0.8                                    | 0.4                                    |

# Compositional Semantics



- Lexical semantics: we can get word meanings
  - Denotational semantics: tokens are references to things in the real world
  - Ontologies: tokens are references to nodes in some knowledge graph
  - Word embeddings: tokens are represented by continuous vectors
- **Syntax:** we can determine what sequences of word types are possible or not possible in a language by modeling latent structure
  - Constituency grammar aka phrase structure grammar aka context-free grammar
  - Dependency grammar

Main challenge of <u>semantic</u> parsing: how do we get a single representation of the <u>entire</u> sentence's meaning from (a) the meanings of its words, and (b) their order and latent structure?



# Recap: Combinatory Categorial Grammar (CCG)



- Another way of representing a constituency grammar: bottom-up
- Elements of a CCG:
  - Lexical items (wordtypes)
  - Each paired with a syntactic type (≈ nonterminal or composition thereof)

```
	ag{the}: NP/N \qquad 	ext{dog}: N \qquad 	ext{John}: NP \qquad 	ext{bit}: (Sackslash NP)/NP
```



$$3 + 5 * 6$$



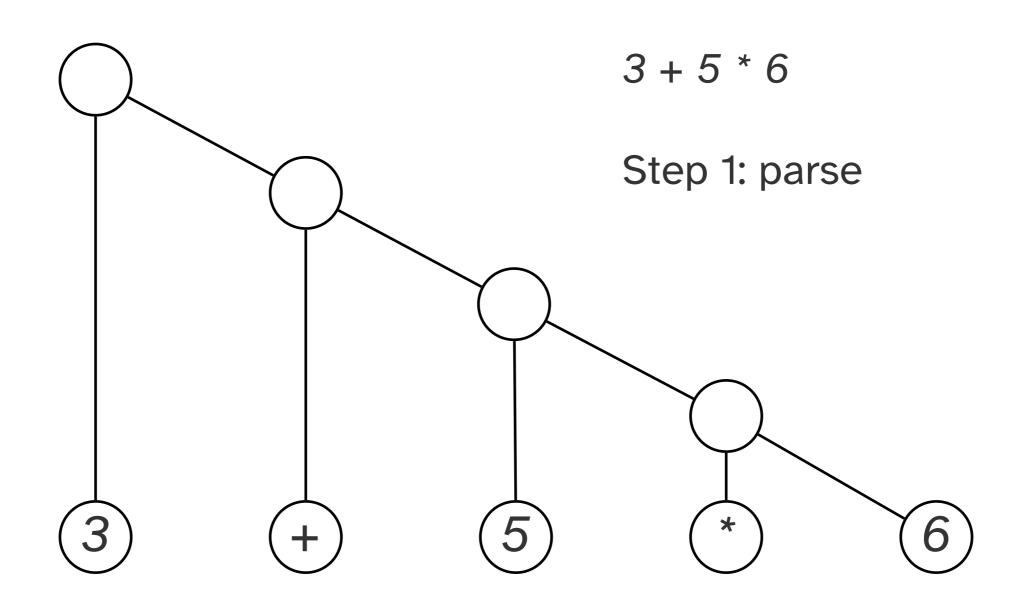




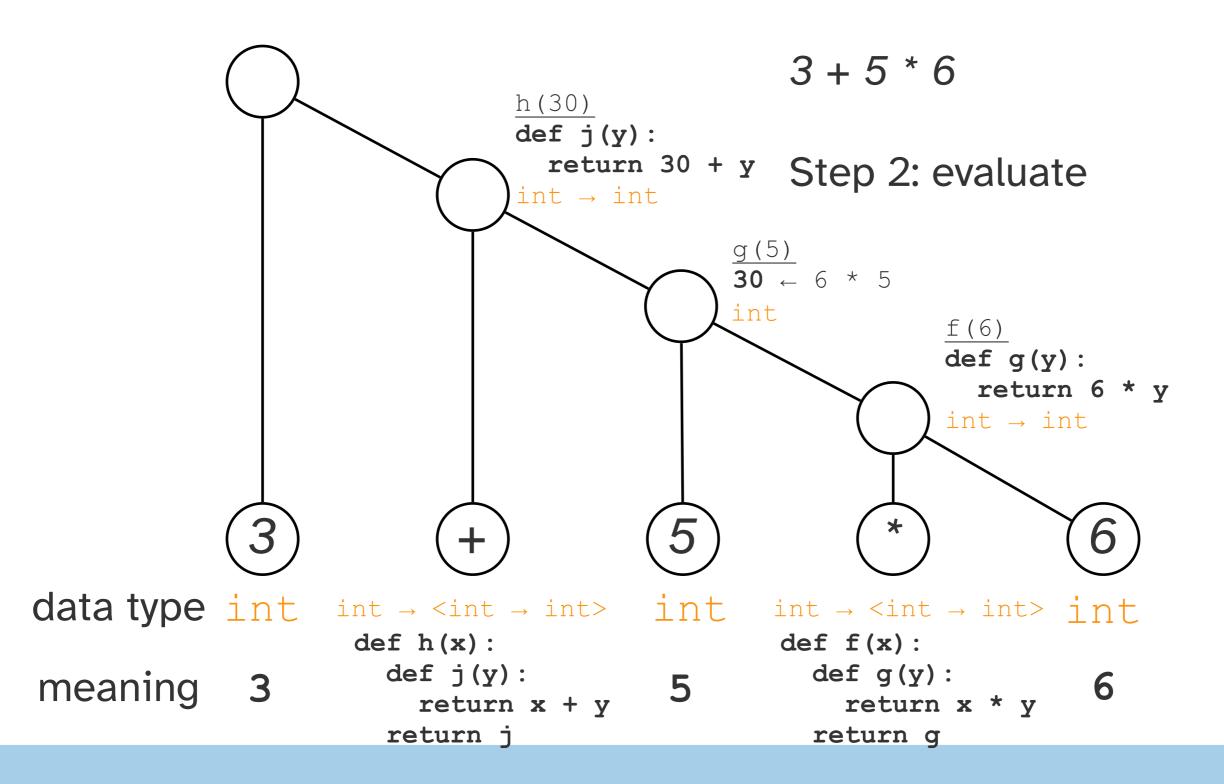




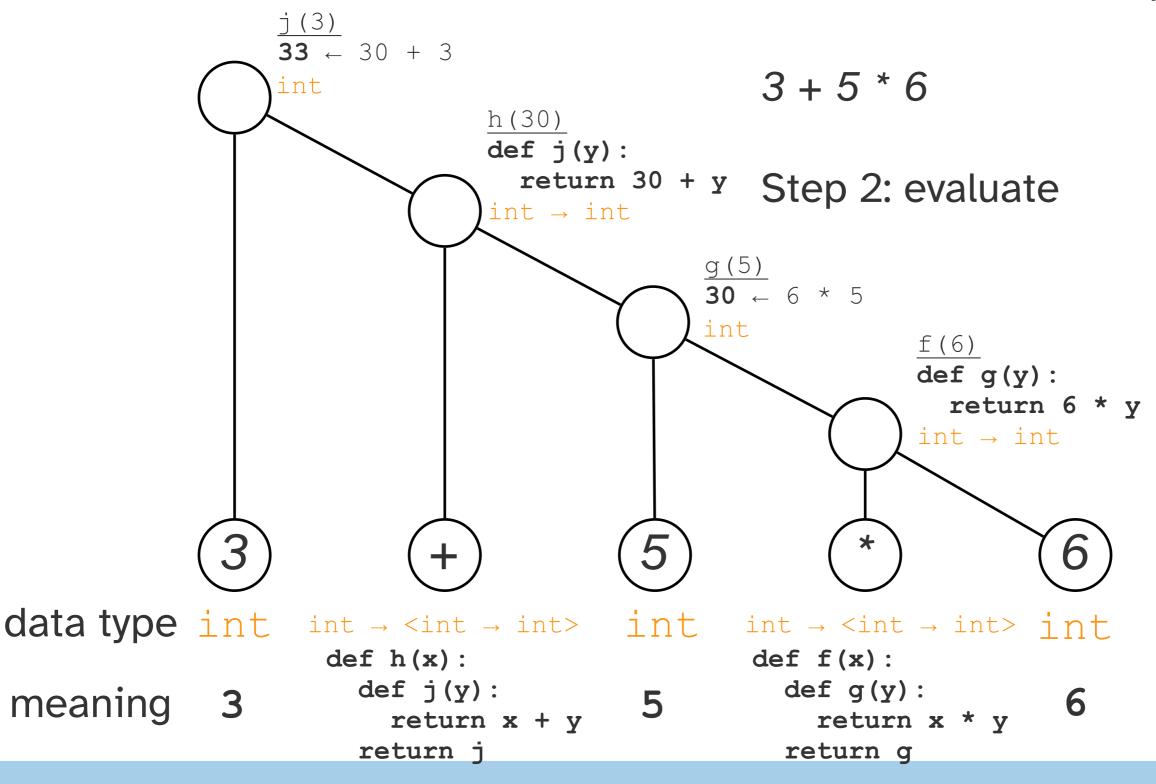






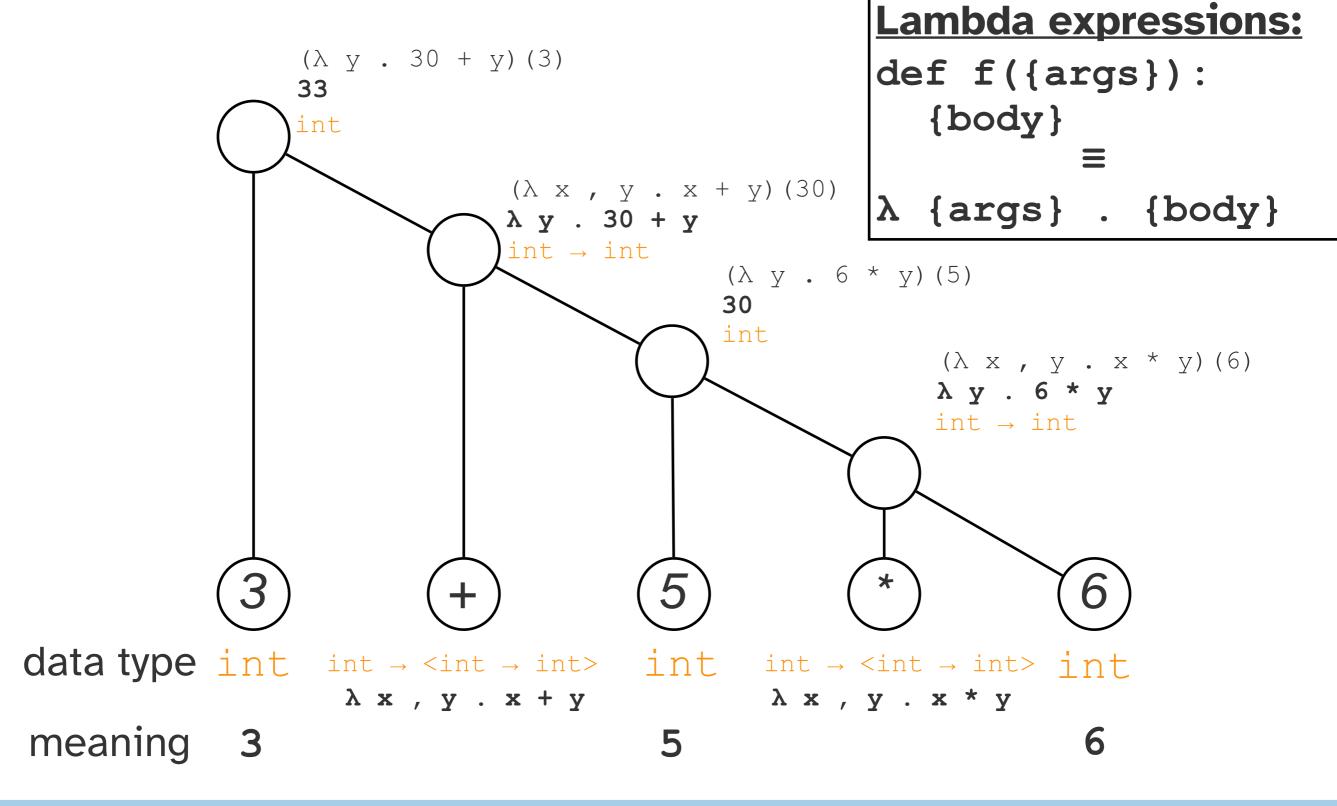






#### CCG and Lambda Calculus

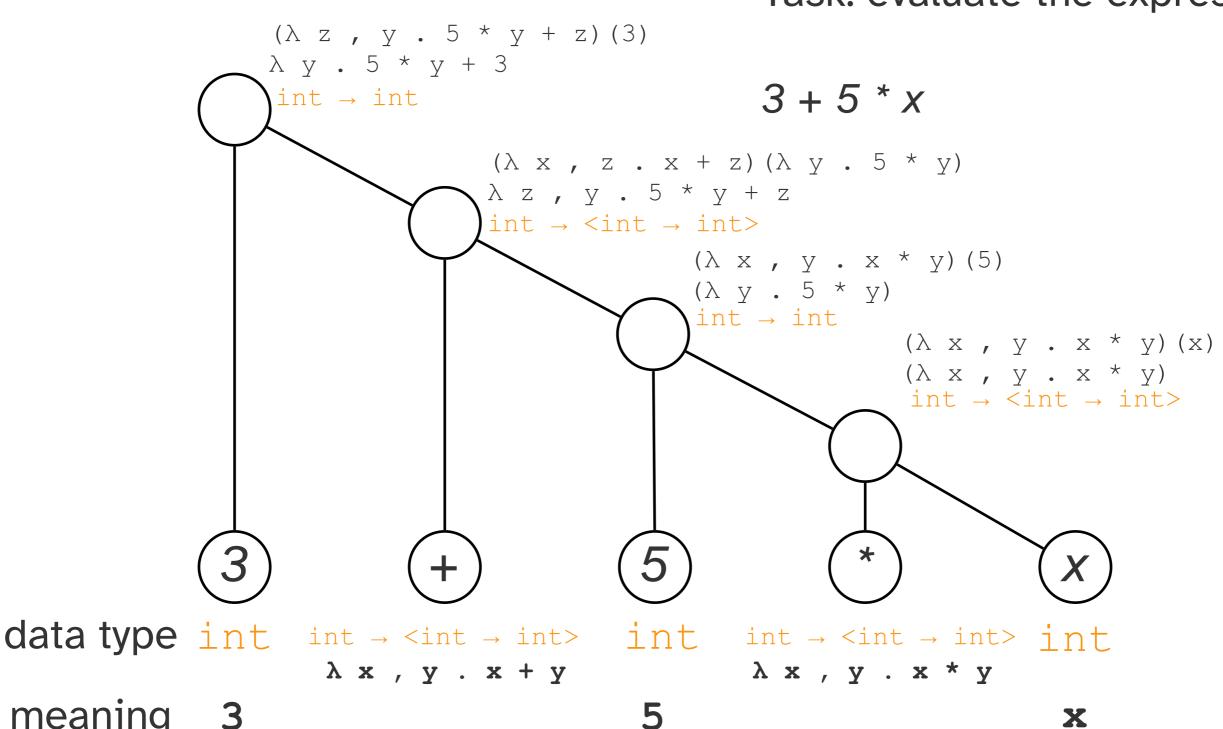




# CCG and Lambda Calculus

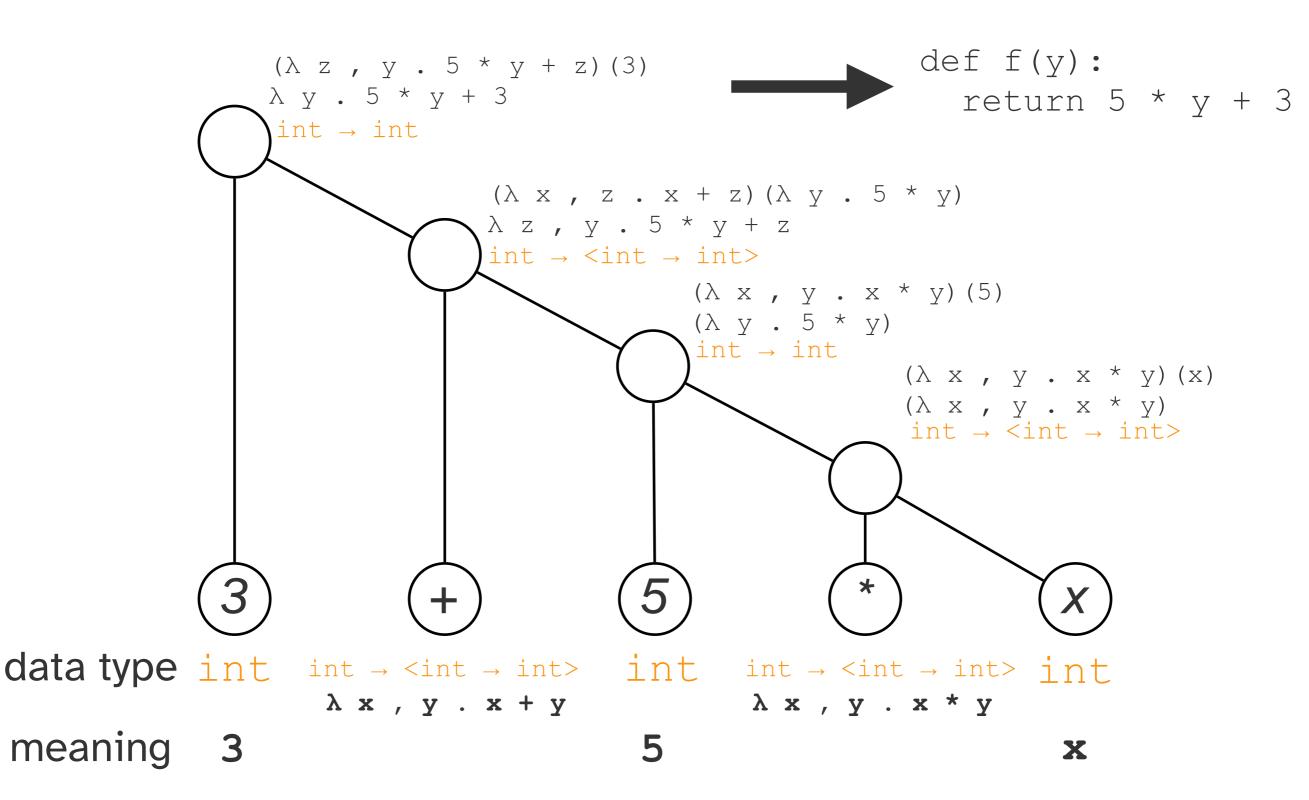
meaning





# CCG and Lambda Calculus

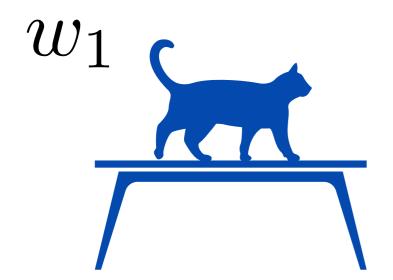




# Truth-Conditional Semantics



- In the context of their use, statements are either true or false, i.e., they have the type *t* (aka, bool in python)
- Let's call this context a world w
- We'd like the outcome of our semantic parsing to be a some that can evaluate to true or false (i.e.,  $\mathcal{W} \to [0,1]$ )



[the cat is on the table] $^{w_1}$ 

 $w_2$ 

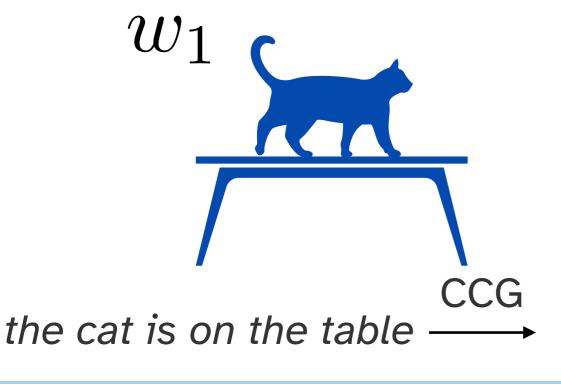


[the cat is on the table] $^{w_2}$ 

# Truth-Conditional Semantics



- In the context of their use, statements are either true or false, i.e., they have the type t (aka, bool in python)
- Let's call this context a world w
- We'd like the outcome of our semantic parsing to be a some that can evaluate to true or false (i.e.,  $\mathcal{W} \to [0,1]$ )



 $w_2$ 



some function that can be evaluated to give us the denotation in an arbitrary world

# Lambda Calculus for Natural Language



#### CCG for semantic parsing:

- Lexical items (wordtypes)
- Each paired with a syntactic type
- And paired with a lambda expression and its semantic type

|                | everyone | likes | Pepper |
|----------------|----------|-------|--------|
| Syntactic type |          |       |        |
| Semantic type  |          |       |        |
| λ-expression   |          |       |        |



everyone likes Pepper



Pepper

**Syntactic type:** noun phrase

**Semantic type:** entity

<u>λ-expression:</u> refers to the unique Pepper entity

|                | everyone | likes | Pepper |
|----------------|----------|-------|--------|
| Syntactic type |          |       | NP     |
| Semantic type  |          |       | е      |
| λ-expression   |          |       | Pepper |



everyone

likes

Pepper
NP
e
Pepper

|                | everyone | likes | Pepper |
|----------------|----------|-------|--------|
| Syntactic type |          |       | NP     |
| Semantic type  |          |       | е      |
| λ-expression   |          |       | Pepper |



$$\lambda x$$
, y . likes (y, x)

**Syntactic type:** expects a noun phrase to follow, and a noun phrase to precede **Semantic type:** expects an entity as its first argument, produces a new function  $\lambda$ -expression: calls the primitive likes function that checks if y likes x

|                | everyone | likes                 | Pepper |
|----------------|----------|-----------------------|--------|
| Syntactic type |          | (S\NP)/<br>NP         | NP     |
| Semantic type  |          | e → <e t="" →=""></e> | е      |
| λ-expression   |          | λ x, y . likes (y, x) | Pepper |



everyone

likes Pepper (S \ NP) / NP NP 
$$e \rightarrow \langle e \rightarrow t \rangle$$
 e  $\lambda x$ , y . likes (y, x) Pepper

Pepper NP

|                | everyone | likes                           | Pepper |
|----------------|----------|---------------------------------|--------|
| Syntactic type |          | (S\NP)/<br>NP                   | NP     |
| Semantic type  |          | e → <e t="" →=""></e>           | e      |
| λ-expression   |          | $\lambda x, y . likes$ $(y, x)$ | Pepper |



everyone

```
likes

(S \ NP) / NP

e → < e → t >

x, y . likes (y, x)

Pepper

S \ NP

e → t

λ y . likes (y, Pepper)
```



$$\lambda$$
 f.  $\forall$  x (person(x)  $\rightarrow$  f(x))

 $\lambda$ -expression: checks whether, for all people, the function f is true

|                | everyone                                                      | likes                 | Pepper |
|----------------|---------------------------------------------------------------|-----------------------|--------|
| Syntactic type | S / (S \ NP)                                                  | (S\NP)/<br>NP         | NP     |
| Semantic type  | <e t="" →=""> → t</e>                                         | e → <e t="" →=""></e> | е      |
| λ-expression   | $\lambda f \cdot \forall x$ (person(x) $\rightarrow$ $f(x)$ ) | λ x, y . likes (y, x) | Pepper |



```
everyone
   S / (S \ NP)
  < e \rightarrow t > \rightarrow t
     λf. ∀x
(person(x) \rightarrow f(x))
```

```
likes
                                Pepper
(S \ NP) / NP
                                   NP
e \rightarrow < e \rightarrow t >
\lambda x, y . likes (y, x)
                                 Pepper
                   S \ NP
                   e → t
```

λy. likes (y, Pepper)

likes Pepper everyone  $(S \setminus NP) /$  $S / (S \setminus NP)$ NP Syntactic type NP  $\langle e \rightarrow t \rangle \rightarrow t \mid e \rightarrow \langle e \rightarrow t \rangle$ Semantic type 9  $\lambda$  f .  $\forall$  x  $\lambda \times , y \cdot likes$ λ-expression Pepper  $(person(x) \rightarrow$ 

f(x)

(y, x)



```
likes
                                                                      Pepper
     everyone
    S / (S \setminus NP)
                                  (S \ NP) / NP
                                                                          NP
                                 e \rightarrow \langle e \rightarrow t \rangle
                                                                         e
   < e \rightarrow t > \rightarrow t
                                 \lambda x, y. likes (y, x) Pepper
     λf. ∀x
 (person(x) \rightarrow f(x))
                                                       S \ NP
                                                       e -> t
                                           λy. likes (y, Pepper)
                                         S
                                         t
\lambda f . \forall x (person(x) \rightarrow f(x)) (\lambda y . likes (y, Pepper))
\forall x (person(x) \rightarrow (\lambda y . likes (y, Pepper))(x)
\forall x (person(x) \rightarrow likes (x, Pepper))
```

# Sentence Meaning



```
\forall x (person(x) \rightarrow likes (x, Pepper))
```

- What can we do with our sentence now that it's a function?
- We can check its meaning against some world!

#### entities

| ID  | Name   | Person? |
|-----|--------|---------|
| 1   | Alane  | yes     |
| 2   | Gopala | yes     |
| ••• |        | •••     |
| N   | Pepper | no      |

#### likes

| ID 1 | ID 2 |
|------|------|
| 1    | N    |
| 2    | N    |
| •••  | •••  |
| N    | 1    |

# Sentence Meaning



```
\forall x (person(x) \rightarrow likes (x, Pepper))
```

- What can we do with our sentence now that it's a function?
- We can check its meaning against some world!
- We can check use it to make inferences!

```
person(Alane)

Λ

∀ x (person(x) → likes (x, Pepper))

⇒ likes(Alane, Pepper)
```

#### Formal Semantics



- Logical operators, like ∨, ∧, and ¬
   Pepper is clever and curious
- Quantifiers like ∀ and ∃
   Some cats like water
- Relationships between functions ⇒ and ⇔
   Squares are rectangles (∀x (square (x) ⇒ rectangle (x)))
- Verbs can have tenses, and can be modified with adverbs
- We can talk about beliefs others have
- Some combinations of meanings are nonsensical (unevaluable) green ideas
- Sentences aren't just statements sometimes they are commands, questions, etc.
- Sentences exist in the context of previous sentences and their meanings



- In NLP, nobody is really mapping from sentences to lambda calculus representations anymore
- However, many of our problems still take the form of mapping from language to some meaningful structured representation



#### Planning (e.g., task specification to PDDL)

```
[DOMAIN]
(define (domain blocksworld-4ops)
 (:requirements :strips)
(:predicates (clear ?x)
           (ontable ?x)
           (handempty)
           (holding ?x)
           (on ?x ?y))
(:action pick-up
 :parameters (?ob)
 :precondition (and (clear ?ob) (ontable ?ob) (handempty))
 :effect (and (holding ?ob) (not (clear ?ob)) (not (ontable ?ob))
             (not (handempty))))
(:action put-down
 :parameters (?ob)
 :precondition (holding ?ob)
 :effect (and (clear ?ob) (handempty) (ontable ?ob)
             (not (holding ?ob))))
(:action stack
 :parameters (?ob ?underob)
 :precondition (and (clear ?underob) (holding ?ob))
 :effect (and (handempty) (clear ?ob) (on ?ob ?underob)
             (not (clear ?underob)) (not (holding ?ob))))
(:action unstack
 :parameters (?ob ?underob)
 :precondition (and (on ?ob ?underob) (clear ?ob) (handempty))
 :effect (and (holding ?ob) (clear ?underob)
             (not (on ?ob ?underob)) (not (clear ?ob)) (not (handempty)))))
```

the table has six blocks on it, arranged into a tower that, from bottom to top, has the following blocks: a, c, e, f, b, and d. rearrange the tower so that their order is, from bottom to top, e, f, a, c, b, d.

```
[QUERY PROBLEM]
(define(problem BW-rand-6)
(:domain blocksworld-4ops)
(:objects a b c d e f )
(:init
(handempty)
(ontable a)
(on b f)
(on c a)
(on d b)
(on e c)
(on f e)
(clear d)
(:goal
(and
(on a f)
(on b c)
(on c a)
(on d b)
(on f e))
```

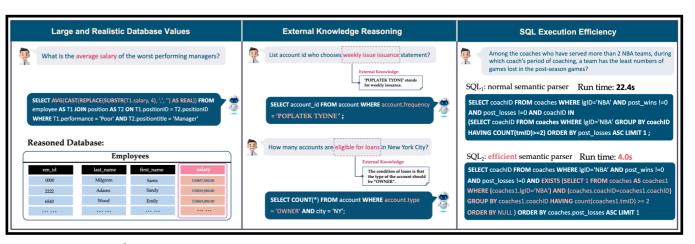


#### Coding

```
def incr_list(l: list):
    """Return list with elements incremented by 1.
   >>> incr_list([1, 2, 3])
    [2, 3, 4]
    >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123])
    [6, 4, 6, 3, 4, 4, 10, 1, 124]
    return [i + 1 for i in 1]
def solution(lst):
    """Given a non-empty list of integers, return the sum of all of the odd elements
    that are in even positions.
    Examples
    solution([5, 8, 7, 1]) \Rightarrow 12
    solution([3, 3, 3, 3, 3]) = > 9
    solution([30, 13, 24, 321]) = > 0
    return sum(lst[i] for i in range(0,len(lst)) if i % 2 == 0 and lst[i] % 2 == 1)
def encode_cyclic(s: str):
    returns encoded string by cycling groups of three characters.
    # split string to groups. Each of length 3.
    groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
    # cycle elements in each group. Unless group has fewer elements than 3.
    groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
    return "".join(groups)
def decode_cyclic(s: str):
    takes as input string encoded with encode_cyclic function. Returns decoded string.
    # split string to groups. Each of length 3.
    groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
    # cycle elements in each group.
    groups = [(group[-1] + group[:-1]) if len(group) == 3 else group for group in groups]
    return "".join(groups)
```



SWE-Bench, Jimenez et al. 2023



BIRD, Li et al. 2023

HumanEval, Chen et al. 2021



#### Reasoning

