Linguistics:
Compositional Semantics
Berkeley

(N

N L P
EECS 183/283a: Natural Language Processing

the dog ran to the house

Recap: Dependency Parsing /\\

ROOT

nsubj prep

‘ ran) o

det POb)
dog /w
DT

det N

the
F house

DT
the

Why 1s Syntax Still Relevant?

Learnability of humanlike syntactic structure

(formal expressivity of architectures, or learnability from data)
Impossible
TTT \ !
Irreversible
Ransdhol‘lrpf I(\;\éord _- reversi: Unablated o 70%
.) BabyLM AANN Accuracy
Lacking
Local Shuffles ——e - Information
Locality Jr
' ~ |
A ‘ remove
Reversed Strings ——@ WU n(r;a(gu(;al | Y '
1 | yword Lrders | Thefa.mzly spent a . > | s 47%
= ' beautiful five days in... AANN Accuracy
Count-based _LaCk'L‘Q I
Grammar Rules Hierarchica
1 Structure
\ J o
e D
Attested Hierarchically The family spent a 43%
Languages Structured) / ‘. beautiful five days in... / AANN Accuracy
e \, Y A
Possible ¥ v replace —> -
What Formal Languages Can Transformers Express? A Survey beautiful a days in... NAAN Accuracy
Lena Strobl William Merrill Gail Weiss e A
Umea University, Sweden New York University, USA EPFL, Switzerland : ! The family spent a
lena.strobl@umu.se willm@nyu.edu gail.weiss@epfl.ch] beautiful five days in... !
------- > |ome| 5 36%
David Chiang Dana Angluin E L remove @ AANN Accu racy
University of Notre Dame, USA Yale University, USA : : a few weeks is all I need!
dchiang@nd.edu dana.angluin@yale.edu 0

Kallini et al. 2024, Strobl et al. 2024, Hu et al. 2024, Misra and Mahowald 2025

Why 1s Syntax Still Relevant? /\\

Serves as a good inductive bias in low-data settings

o Relationship between scaling laws and hierarchical
Pre-training on formal languages compositionality of human language

o g

(OS]
N

+ Pre-pretraining Baseline

33% fewer tokens

7\

__Final baselineloss ____™ a @ @ @ @
\\

7\

Cross Entropy Loss
(OS]
()]
1

3.4 -
0 500M 1B 1.5B e@@@e@e@
Pretraining Tokens))
Meta-learning with formal languages
p(d|h)p(h)
p(hld) =
p(d) Task 1
h = plus(concat(A, B))
h = concat(Task 2 meta
or(A, C), . learning
plus(A), .
2, Task n
or(g, B))
Bayesian model Training data Neural network

Hu et al. 2025, McCoy and Griffiths 2025, Cagnetta et al. 2025

Compositional Semanticsmm

e How do we represent sentence meaning?
e How can we get from word meaning to sentence meaning?

e What are some applications of formal semantics in NLP?

Compositional Semantics/]\

e Lexical semantics: we can get word meanings

e Denotational semantics: tokens are references
to things in the real world

e Ontologies: tokens are references to nodes in
some knowledge graph

e Word embeddings: tokens are represented by
continuous vectors

everyone likes Pepper

0.3 0.8 0.9
0.2 0.4 0.0
0.6 0.6 0.0
0.4 0.5 0.6
0.7 0.8 0.4
0.3 0.8 0.4

Compositional Semantics

e Lexical semantics: we can get word meanings

e Denotational semantics: tokens are references
to things in the real world

e Ontologies: tokens are references to nodes in
some knowledge graph

e Word embeddings: tokens are represented by
continuous vectors

e Syntax: we can determine what sequences of word
types are possible or not possible in a language by
modeling latent structure

e Constituency grammar aka phrase structure
grammar aka context-free grammar

e Dependency grammar

Main challenge of semantic parsing:
how do we get a single representation
of the entire sentence’s meaning from
(a) the meanings of its words, and

(b) their order and latent structure?

everyone likes Pepper

0.3 0.8 0.9
0.2 0.4 0.0
0.6 0.6 0.0
0.4 0.5 0.6
0.7 0.8 0.4
0.3 0.8 0.4

Recap: Combinatory Categorial Grammar /m
(CCG) 11

e Another way of representing a constituency grammar:
bottom-up

e Elements of a CCG:
e Lexical items (wordtypes)

e Each paired with a syntactic type (= nonterminal or
composition thereof)

the: NP/N dog:N John: NP bit: (S\INP)/NP

the dog bit John

Example from Wikipedia

An Analogy: Code Interpreters /‘\

Task: evaluate the expression:

3+5*6

® ®» 6 O 6

An Analogy: Code Interpreters /‘\

Task: evaluate the expression:

3+5*6

Step 1: parse

An Analogy: Code Interpreters /\\

Task: evaluate the expression:

3+5*6

h (30)
def j(y):

return 30 +¥ Step 2: evaluate

def g(y):
return 6 * y

® ©® 6

data type
def h(x) : def f(x):
: def j(y): def g(y):
mean]ng 3 return x + y S return x * y 6

return j return g

An Analogy: Code Interpreters /\\

Task: evaluate the expression:

3+5*6

h (30)
def j(y):

return 30 +¥ Step 2: evaluate

def g(y):
return 6 * y

® ©® 6

data type
def h(x) : def f(x):
: def j(y): def g(y):
mean]ng 3 return x + y S return x * y 6

return j return g

CCG and Lambda Calculus /‘\

Lambda expressions:

By 309 def f({args}):
{body}
A {args} . {body}

data type

meaning 3 5 6

CCG and Lambda Calculus /‘\

Task: evaluate the expression:
(AN z , v . 5 * vy + z)(3)

3+5*x

(A x , 2z . x+t z)(ANy . O * v)
*y + z

®

data type
meaning 3 5 X

CCG and Lambda Calculus /‘\

def f(y):
return 5 * y + 3

data type

meaning 3 5 X

Truth-Conditional Semantics

e In the context of their use, statements are either true or
false, 1.e., they have the type t (aka, bool in python)

e Let's call this context a world w

e We'd like the outcome of our semantic parsing to be a
some that can evaluate to true or false (i.e.,,)} — [(), 1])

AL e

[the cat is on the table|“* [the cat is on the table]"?

Truth-Conditional Semantics ¢,

e In the context of their use, statements are either true or
false, 1.e., they have the type t (aka, bool in python)

e Let's call this context a world w

e We'd like the outcome of our semantic parsing to be a
some that can evaluate to true or false (i.e.,,)} — [(), 1])

AL e

the cat is on the table ﬁ some function that can be evaluated to
give us the denotation in an arbitrary world

Lambda Calculus
for Natural Language i
CCG for semantic parsing:
e Lexical items (wordtypes)

e Each paired with a syntactic type

e And paired with a lambda expression and its semantic type

everyone likes Pepper

Syntactic type

Semantic type

A-expression

everyone likes Pepper

Example Parse

Pepper

Syntactic type: noun phrase
Semantic type: entity

everyone

Syntactic type NP

Semantic type e

A-expression Pepper

Example Parse m%

everyone likes Pepper

NP
e

everyone

Syntactic type NP

Semantic type e

A-expression Pepper

Example Parse 7
A X, v . likes (y, x)

Syntactic type: expects a noun phrase to follow, and a noun phrase to precede
Semantic type: expects an entity as its first argument, produces a new function

everyone
NP
Syntactic type (S \)/ NP
NP
Semantic type e L5 <e - t> e

A-expression

Pepper

Example Parse

everyone likes Pepper
(S \ NP) / NP NP

everyone
NP

Syntactic type (S \)/ NP
NP

Semantic type e L5 <e - t> e

A-expression

Pepper

everyone likes Pepper

(S \ NP) / NP NP
e - < e - t > e
A x, vy . likes (y, x) Pepper
>
S \ NP
e - t

Ay . likes (y, Pepper)

Example Parse

AN .V x

(person (x)

- f(x))

N

everyone
S \ NpP) /
Syntactic type S / (S \ NP) () NP
NP
Semantic type <e 5t 5 tle 5 <e 5 t> e
, Af LV ox A X, V likes
A-expression (person (x) - (y Pepper
£(x)) ’

Example Parse

everyone
S / (S \ NP)
< e >t > ¢t

likes

(S \ NP) / NP
e - < e - t >

f(x))

everyone
S \ NP) /
Syntactic type S / (S \ NP) (ND) NP
Semantic type <e 5t 5 tle 5 <e 5 t> e
, Af LV ox A X, V likes
A-expression (person (x) - (v, %) Pepper

everyone likes Pepper

S / (S \ NP) (S \ NP) / NP NP
< e 5t > ¢t e - < e - t > e
A f .V x A x, vy . likes (y, x) Pepper
(person(x) - £(x)) >
P S \ NP
e - t
Ay . likes (y, Pepper)
>
S
t

Af .V x (person(x) - £(x)) (A y . likes (y, Pepper))
V x (person(x) - (A y . likes (y, Pepper)) (x)

V x (person(x) - likes (x, Pepper))

Sentence Meaning mm

V x (person(x) — likes (x, Pepper))

e \What can we do with our sentence now that it's a function?

e We can check its meaning against some world!

entities

Sentence Meaning mm

V x (person(x) — likes (x, Pepper))

e What can we do with our sentence now that it's a function?
e We can check its meaning against some world!

e \We can check use it to make inferences!

person (Alane)
A
V x (person(x) — likes (x, Pepper))

- l1kes (Alane, Pepper)

Formal Semantics

Logical operators, like v, A, and -
Pepper is clever and curious

Quantifiers like v and 3
Some cats like water

Relationships between functions = and &
Squares are rectangles (Vx (square (x) = rectangle(x)))

Verbs can have tenses, and can be modified with adverbs

We can talk about beliefs others have

Some combinations of meanings are nonsensical (unevaluable)
green ideas

Sentences aren't just statements — sometimes they are commands,
questions, etc.

Sentences exist in the context of previous sentences and their meanings

Modern Formal Semantics ¢,

e In NLP, nobody is really mapping from sentences to
lambda calculus representations anymore

e However, many of our problems still take the form of
mapping from language to some meaningful structured
representation

Modern Formal Semantics /‘\

Planning (e.g., task specification to PDDL)

[DOMAIN]
(define (domain blocksworld-4ops)
(:requirements :strips)
(:predicates (clear ?7x)
(ontable 7x)
(handempty)
(holding 7x)
(on ?7x ?7y))

(:action pick-up
:parameters (7ob)
:precondition (and (clear 7ob) (ontable 7ob) (handempty))
:effect (and (holding 7ob) (not (clear 7ob)) (not (ontable 7ob))
(not (handempty))))

(:action put-down
:parameters (7ob)
:precondition (holding 7?ob)
:effect (and (clear ?7ob) (handempty) (ontable ?ob)
(not (holding 7ob))))

(:action stack
:parameters (7ob 7underob)
:precondition (and (clear 7underob) (holding ?7ob))

:effect (and (handempty) (clear 7ob) (on 7ob 7underob)
(not (clear ?underob)) (mot (holding ?7ob))))

(:action unstack
:parameters (7ob ?underob)
:precondition (and (on 7ob 7underob) (clear 7ob) (handempty))
:effect (and (holding 7ob) (clear 7underob)

(not (on ?ob ?underob)) (not (clear ?ob)) (not (handempty)))))

Example from Valmeekam et al. 2025

the table has six blocks on it, arranged into a tower
that, from bottom to top, has the following blocks: a,
c, e f, b, and d. rearrange the tower so that their
order i1s, from bottom to top, e, f, a, ¢, b, d.

[QUERY PROBLEM]
(define(problem BW-rand-6)
(:domain blocksworld-4ops)
(:objects abcdef)
(:init

(handempty)

(ontable a)

(on b £)

(on c a)

(on d b)

(on e ¢)

(on f e)

(clear d)

)
(:goal
(and

(on a f)
(on b ¢)
(on c a)
(on d b)
(on £ e))
)
)
)

Modern Formal Semantics

Coding

def

def

def

def incr_list(l:

ist):
"""Return list with elements incremented by
>>> incr_list([1, 2, 31)

(2, 3, 4]

>>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123])

[6, 4, 6, 3, 4, 4, 10, 1, 124]

return [i + 1 for i in 1]

solution(lst):

"""Given a non-empty list of integers, return the sum of all of the odd elements
that are in even positions.

Examples

solution([5, 8, 7, 1]) ==>12
solution([3, 3, 3, 3, 3]) ==>9
solution([: 13, 24, 321]) ==>0

nnn

return sum(1st[i] for i in range(0,len(lst)) if i % 2 == 0 and 1st[i] % 2 == 1)

encode_cyclic(s: str):

nnn

returns encoded string by cycling groups of three

nnn

characters.

groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
groups = [(group[1:] + group[@]) if len(group) ==

return "".join(groups)
decode_cyclic(s: str):

takes as input string encoded with encode_cyclic function.

wnn

Returns

groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)1]

groups = [(group[-1] + group[:-11) if len(group) == 3 else group for group in groups]

return "".join(groups)

3 else group for group in groups]

decoded string

g.

>

©® Issue

f® Language Model)

data leak in GBDT due to warm
start (This is about the non-
histogram-based version of...

() Codebase

B sklearn/
B examples/
[© README.rst

D regs.txt
D setup.cfg
D setup.py

v

{1 Generated PR

+20-12 HHENE
B sklearn
Y gradient_boosting.py
O helper.py
B utils =

() Unit Tests
Pre PR PostPR Tests
v join_struct_col
v vstack_struct_col
v dstack_struct_col
v matrix_transform
v euclidean_diff

SWE-Bench, Jimenez et al. 2023

Large and Realistic Database Values

P'\ What is the average salary of the worst performing managers?
[§

SELECT AVG(CAST(REPLACE(SUBSTR(T1.salary, 4), ', ") AS REAL)) FROM
employee AS T1 JOIN position AS T2 ON T1.positionID = T2.positionID
WHERE T1.performance = 'Poor' AND T2.positiontitle = 'Manager'

Reasoned Database:

(Employees |
0000 Milgrom Santa US857,500.00
22 Adams Sandy US$19,500.00
6543 Wood Emily USS69,000.00

External Knowledge Reasoning

=

List account id who chooses;weekly issue issuance|statement?
T f

External Knowledge
“POPLATEK TYDNE stands
for weekly issuance.
SELECT account_id FROM account WHERE account.frequency @
=‘POPLATEK TYDNE' ;

.3 How many accounts are:eligible for loansiin New York City?

External Knowledge:

The condition of loans is that
the type of the account should
be “OWNER”.

SELECT COUNT(*) FROM account WHERE account.type
= ‘OWNER’ AND city = ‘NY’;

m Among the coaches who have served more than 2 NBA teams, during
T which coach’s period of coaching, a team has the least numbers of

games lost in the post-season games?

SQL,: normal semantic parser Run time: 22.4s

SELECT coachID FROM coaches WHERE IgID="NBA’ AND post_wins !=0
AND post_losses =0 AND coachiD IN

(SELECT coachID FROM coaches WHERE IgID="NBA’ GROUP BY coachID
HAVING COUNT(tmID)>=2) ORDER BY post_losses ASC LIMIT 1;

SQL,: efficient semantic parser Run time: 4.0s
SELECT coachID FROM coaches WHERE IgID="NBA’ AND post_wins !=0

AND post_losses !=0 AND EXISTS (SELECT 1 FROM coaches AS coachesl
'WHERE (coaches1.IgID="NBA’) AND (coaches.coachlD=coachesl.coachID)

GROUP BY coaches1.coachID HAVING count(coaches1.tmiID) >= 2
ORDER BY NULL) ORDER BY coaches.post_losses ASC LIMIT 1

HumanEval, Chen et al. 2021

BIRD, Li et al. 2023

Modern Formal Semantics /‘\

Reasoning

I Theorem For every integer n such that n > 1, n can be expressed as the product of one or more primes, uniquely up to the order in which they appear.

I Proof In Integer is Expressible as Product of Primes, it is proved that every integer n such that n > 1, n can be expressed as the product of one or more primes.
! In Prime Decomposition of Integer is Unique, it is proved that this prime decomposition is unique up to the order of the factors.
b e e e e e e e e e e e e e e e e o o o e = = = = e e e e e e e e e e = = = = = = e e e e e e = = = = = = = = = e = 1
T
: I Proof Tree n: N, 1: List N, h:: prod L =n, hz: ¥ p € 1, Prime p Local Context :
| Premises theorem perm_of_prod_eq_prod : V {l1. 1 : : F 1 ~ factors n + Goal "
1 List M}, li.prod = lz.prod -» (V¥ p € 1., fine' f d d |
| Prime p) » (V p € 12, Prime p) - Perm 11 1o | retin® R - - |
: : | l l 1
I
. I ee “ee e
1 theorem prime_of_mem_factors {n : N} : V {p - ; ; 1
" . N}, (h: p € factors n) - Prime p : + prod 1 = prod (factors n) VY p€T1l, _root_.Prime p VY p € factors n, _root_.Prime p |
! I lrw [h1] lsimp_rw [« prime_iff] lsimp_rw [« prime_iff] |
! 1
1
I 1 + n = prod (factors n) VY p €1l Prime p + V p € factors n, Prime p :
1
I Theorem theorem factors_unique {n : N} {1l : List N} | lrefine' (prod_factors _).symm lexact h2 exact fun p => 1
! (ha : prod 1. =n) (h2 : V p €1, Prime p) : prime_of_mem_factors |
! 1 ~ factors n := by | V I
1 " Fn#0 \/ 1
: Proof refine' perm_of_prod_eq_prod _ _ 1 lrintro rfl !
« rw [h1] 1 '
: refine' (prod_factors _).symm | ni—N, hit prod 1 =0, - 1
. rintro rfl | - False "
" rw [prod_eq_zero_iff] at ha 1 lrw [prod_eq_zero_iff] at h: :
. exact Prime.ne_zero (hz2 @ hi) rfl 1
. - simp_rw [« prime_iff] 1 hi: @ €1, -
" exact ha 1 + False . . .
! . simp_rw [« prime_iff] I l Py —— Question: If a > 1, then the sum of the real solutions of ya — va +x = x is equal to
| exact fun p => prime_of_mem_factors 1 e A
| ! v Response: <think>
I . .
------------------------------ t--------------------- Tosolve the equation ya — va + x = x, let’s start by squaring both - - -

Li et al. 2@24 (a—\/m)2=x2 — a-+a+x=x2

Rearrange to isolate the inner square root term:
(a-x)?=a+x = ®-2a*+ (P’ =a+x = x*-2ax* -x+(a*-a) =0

Wait, wait. Wait. That’s an aha moment I can flag here.

Let’s reevaluate this step-by-step to identify if the correct sum canbe - - -
We started with the equation:
Va-+vVa+x=x

First, let’s square both sides:
a-Va+x=x* = Va+x=a-x
Next, I could square both sides again, treating the equation: - - -

2

DeepSeek-AIl

