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End-to-end speech recognition /]\
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How to obtain the posterior »w(o)

* We just replace it with a neural network-based function f(.)

argmax p(W10) = argmax f**(W|0)
W W

« Easy and simple, no math (in this level), however

* wis a sequence! W =(wn€Vin=1..,N)

« Very difficult to deal with it
* Say N =10, |7| = 100, we have to deal with 100" possible sequences

* Also, the length ~ is variable

e We have to use a special neural network (e.g., attention, CTC, and RNN-
transducer)



e Classical speech recognition
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Classical (hon-end-to-end) speech /]\

recognition

W = argmax p(W|0O)
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Speech =2 Text

Speech o:

Text W: | want to go to the campus



Speech =2 Phoneme = Text 4%

Speech o:

SR g

Phoneme L: AYWAANTTUWGOWTUWKAEMPAHS

=5k g

Text W: 1 want to go to campus




How to obtain the posterior »wo)

e Factorize the model with phoneme

*Let L— (e {/AA/, /AE/, - Yi=1,-- ) be a
phoneme sequence

— L S |
arg mme}xp(W]O) arg max zL:p(W, O0) um rule

— arg maxz p(O|W, L)p(LIW)p(W) Bayes+ Product rule
VT

p(0) |
lgnore p(0) as it
= argmax Z p(O|W, L)p(L|W )p(W) does not depend
L on w
= arg max Z p(O|L)p(L|W)p(W) Conditional
W L independence

_ — . . assumption_
Note: the right hand side is not the probability as it lacks a sum to one constraint



Noisy channel model

Source Sentence: Noisy Channel

In a hole in the ground £=s

. 7 N
If music be the  ~—___ R L7 s
food of love.. A N '| -
VL ~~<Z Noisy Sentence
S A
Decoder
||| ||||||||||||||| U ||||||||||||| ‘)ulu i
. e~ A ,'\I Noisy 1
Guess at Source Every happy family XAV
WA Noisy 2
If music be the R N
food of love.. AZANoisyn

If music be the food of love~-\h_ A=

kN

argmaxp(W | 0) = argmaxp(O | WpW) ~ argmax Y p(O| L)p(L|W)p(W)
L

« Speech recognition
e p(O|L): Acoustic model (Hidden Markov model)
* p(L|W): Lexicon

° p(W): Language model (n-gram)



Speech recognition pipeline /]\
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Waveform to speech feature

Lk s ALk
"W’WV‘W Featu_re >
extraction

» Performed by so-called feature extraction module

« Mel-frequency cepstral coefficient (MFCC), Perceptual Linear
Prediction (PLP) used for Gaussian mixture model (GMM)

e Log Mel filterbank used for deep neural network (DNN)

e Time scale
e 0.0625 milliseconds (16kHz) to 10 milliseconds

e Type of values
o Scalar (or discrete) to 12—40 dimensional vector

—




Speech feature to phoneme

« Performed by so-called acoustic modeling module

1

Acoustic
modeling

},

G ONW T UW

e Hidden Markov model (HMM) with GMM as an emission probability function
« Hidden Markov model (HMM) with DNN as an emission probability function

e Time scale

e 10 milliseconds to ~100 milliseconds (depending on a phoneme)

e Type of values

« 12-dimensional continuous vector to 50 categorical value (~6bit)

« The most critical component to get the ASR performance

e It can be a proba

GOWT UW

nility of possible phoneme sequences, e.g.,

or

GOW Z T UW

with some scores




Acoustic model po| L)

O and L are different lengths

 Align speech features and

phoneme sequences by using
HMM

SERNA!
clfolyc
« Provide p(O ‘ L) based on this
alignment and model

UW,

UW,

e Output distributions can be
modeled using Gaussian Mixture

Models (Max. Likelihood
parameters of the distributions)
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End-to-End ASR /\\

* Direct mapping function from speech feature sequence o
to text w

e Usually, it does not deal with the phoneme-based
intermediate representation

 Mainly three architectures

e Attention-based
e Decoder-only is also included here (not fully end-to-end)

e Connectionist temporal classification (CTC)
e Recurrent neural network transducer (RNN-T)



HMM-based

T
(Classical) SIE

+

RNN- Attention-
transducer based




Attention-based ASR

Y1 Yo Y3 Y4 Y5 Y Y7 Yg Yg Ym
I t*s time
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1 1
/ Subsampling \
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80-dimensional ! ¢
log Mel spectrum f1 lt
]

per frame
Feature Computation

f

4—sts- i

10T ER]  Schematic architecture for an encoder-decoder speech recognizer.

Listen Attend & Spell (2016)



Attention-based ASR /N

e Our staring point p(w'|0)
* Input:0o=(o,|t=1,...,7)
» Itis difficult to deal with w= (w, e 7|i=1....N)
* T+N

* Instead, we factorize p(w|0) as follows based on a probabilistic chain
rule

p(W|0) = || p(wilws.i—1,0)

1=1



Attention-based ASR /N

e Our staring point p(w'|0)
e Input: 0=(o,|t=1,....T)
- Itis difficult to deal with w= (w, e 7|i=1.....N)
* TN
* Instead, we factorize p(W | O) as follows based on a probabilistic chain rule

p(W10) = | [ p(wilwi.i1,0)

1=1

e This neural network is handled by an attention-based method to align the
input and output (soft alignments)

« We usually do not use the phoneme



Whisper (OpenAl

p(W10) = | | p(w;|wy.;_1, O)
1=1
EN T;;‘,';i' 0.0 | The |quick brown ...
next-token
prediction
-
( MLP )
(~ N
( MLP ] [ cross attention |
[ selfattention | [ selfattention |
~ T - - i
. ,9 .
. b= : .
| () |
Transformer _{ e ™ = e ™
Encoder Blocks ( MLP ) * ( MLP ) Transformer
| selfattention | 8 | cross attention | Decodar Slocis
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( ) [ self attention |
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4 )
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Sinusoidal — (__cross attention
Positional [ self attention |
Encoding & J
Learned
/ 2 x ConviD + GELU Positional
Encoding
SOT| EN |48 0.0 | The |quick| ...
Log-Mel Spectrogram Tokens in Multitask Training Format

A sketch of the Whisper architecture from Radford et al. (2023). Because
Whisper is a multitask system that also does translation and diarization (we’ll discuss these
non-ASR tasks in the following chapter), Whisper’s transcription format has a Start of Tran-
script (SOT) token, a language tag, and then an instruction token for whether to transcribe or
translate.
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Hard Alignments /‘\
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Soft alighments
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Connectionist Temporal Classification

Y(output) |d|i||ninje|r
remove blanks | d || i n nie r
merge duplicates |[d| i ||uf N [ |N]|l€ r -
A (alignment) [d|i |a|n|n|alnjelr|rjr|ria|a
T S T T e S S e e e
X (input) [Xq|[X2|X3 | X4 || X5 || X6 || X7 || X8 || X0 |X10|*11/X12/X13|X14

13T CBERR] The CTC collapsing function B, showing the space blank character _; re-
peated (consecutive) characters in an alignment A are removed to form the output Y.

The CTC collapsing function is many-to-one; lots of different alignments map
to the same output string. For example, the alignment shown in Fig. 15.13 is not
the only alignment that results in the string dinner. Fig. 15.14 shows some other
alignments that would produce the same output.

dilifli|n|lolninjelelelr|r{r|u
did/|i|ninllalnie|r|r|a/alelu
didjd|i|lnfo/nin|alalalelr|r

10TU G EREY  Three other legitimate alignments producing the transcript dinner.



RNN-Transducer

P (Yt ul X4 Yir.u1p)

SOFTMAX
PREDICTION ki
[ = hpm[ JOINT NETWORK | + DECODER

Yu-1

(' ENCODER )
f

Xt

IDTuCHERYWE The RNN-T model computing the output token distribution at time ¢ by inte-
grating the output of a CTC acoustic encoder and a separate ‘predictor’ language model.




CTC vs. RNN-T /]\

e CTC e RNN-transducer

e > > >

e > > >

S > > >

<s> > > >
t=1 t=3 t=4 t=5

1 @2 &3 ¢4 &5



Today’s Agenda

Self-Supervised Learning
for Speech



Evolution of (Text) Foundation Model

The task-specific
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The large language
model era (2022 -)

Output
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Prompt

More task-universality, less human effort



Evolution of (Speech) Foundation Modelf/]\
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model era (- 2020)
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Self-supervised learning /]\

The setting:

1. Afamily of downstream tasks in mind (The main
motivational difference).

2. Lots of unlabeled in-domain data.

Phase 1: Pre-train

3. A small fraction of labeled data.




Self-supervised learning /]\

One basic procedure:
1. Design a “pretext” task over the input space. Examples:
+ Predict the future part of the signal given the past
+ Predict a masked portion of the signal given the unmasked one.
+ Reconstruct the input through a quantization or extreme
compression.
+ Distinguish similar “positive” samples from different “negative”
ones.

2. Use the pretext task for training the neural network using the
unlabeled data.
3. Fine-tune the pre-trained network on the labeled data.



Self Supervised Learning

Sometimes learners set up tasks for themselves to solve...

* Even if we only have unlabeled data, we may be able to define “pretext tasks” from the

data alone
* A good pretext task is one that requires us to represent the “useful” information in the

input in order to solve it well



0.1% Aardvark

Use the output of the Soseible o
’ oy 0SSIDle Classes:
maskeq word’s position All English words ~ |190%1] Improvisation
to predict the masked word
0%  Zyzzyva
[ FFNN + Softmax

-
Randomly mask 11 ZT 3T Jd st e A s 51ZT

15% of tokens
[CLS) Let's  stick to  [MASK] in this skit

Input rtrttrtr 111

[CLS] Let's  stick to improvisation in this skit



e Speech inputs have a variable number of lexical units per
sequence.




Speech inputs have a variable number of lexical units per
seguence.

Speech is a long sequence that doesn't have segment
boundaries.




Speech inputs have a variable number of lexical units per
seguence.

Speech is a long sequence that doesn't have segment
boundaries.

Speech is continuous without a predefined dictionary of
units to explicitly model in the self-supervised setting.




Speech inputs have a variable number of lexical units per
sequence.

Speech is a long sequence that doesn't have segment
boundaries.

Speech is continuous without a predefined dictionary of units
to explicitly model in the self-supervised setting.

Speech processing tasks might require orthogonal
information, e.g., ASR and Speaker ID.
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e Generative models e Contrastive models ¢ Predictive models

» Embedding models ¢ Multi-modal models
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Contrastive Predictive Coding (CPC)

van den Oord et al, 2019 “Representation Learning with Contrastive
Predictive Coding”



van den Oord et al, 2019 “Representation Learning with Contrastive
Predictive Coding”



e The first successful representation learning approach for
speech data.

van den Oord et al, 2019 “Representation Learning with Contrastive
Predictive Coding”



e The first successful representation learning approach for
speech data.

e It triggered lots of research in speech representation
learning.

van den Oord et al, 2019 “Representation Learning with Contrastive
Predictive Coding”



e Distinguish correct (positive) samples from wrong
(negative) ones.

van den Oord et al, 2019 “Representation Learning with Contrastive
Predictive Coding”



e Distinguish correct (positive) samples from wrong
(negative) ones.

e But, how do we choose positive and negative
examples?

van den Oord et al, 2019 “Representation Learning with Contrastive
Predictive Coding”



van den Oord et al, 2019 “Representation Learning with Contrastive
Predictive Coding”



Tt—3 Lt—2 Tt—1 Lt Lt+1 Lt+2 Lt+3 Lt+4

van den Oord et al, 2019 “Representation Learning with Contrastive
Predictive Coding”



[ Genc \ [ Yenc \ [ Genc \ | Yenc \ [ Yenc \ [ Yenc \ [ YGenc \ | Yenc \
Lt—3 Lt—2 Lt—1

Lt+1 Lt+2 Lt+3 Lt+4

van den Oord et al, 2019 “Representation Learning with Contrastive
Predictive Coding”
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van den Oord et al, 2019 “Representation Learning with Contrastive
Predictive Coding”




Zt Zt+1 Zt+2 Zt+3 Zt+4
g e1c g €I11C g €1cC g €11C g e1nc g enc g €I11C genc

| Tt—3 | Tt—2 | Ti—-1 | Tt Tt+1 Tt+2 Tt+3 Tt+4

van den Oord et al, 2019 “Representation Learning with Contrastive
Predictive Coding”
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van den Oord et al, 2019 “Representation Learning with Contrastive
Predictive Coding”




Ct fi(@eyn, cr) = exp (Z?—I—kaCt)

Zt+1 Rt+2 Rt+3 Rt+4
g enc g enc g enc g c1c g enc g c1cC g cnc genc

| Tt—3 | Ti-2 | Ti-1 | Tt+1 Tt+2 Tt+3 Tt+4

van den Oord et al, 2019 “Representation Learning with Contrastive
Predictive Coding”




CPC: The pretext task

Predictions

- - — - — - — - — . —
— . — — — . —
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van den Oord et al, 2019 “Representation Learning with Contrastive
Predictive Coding”
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van den Oord et al, 2019 “Representation Learning with Contrastive
Predictive Coding”
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van den Oord et al, 2019 “Representation Learning with Contrastive
Predictive Coding”



fr(xirip,ct) = exp (zﬂkact)
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van den Oord et al, 2019 “Representation Learning with Contrastive
Predictive Coding”



e [InfoNCE maximizes
the mutual information
between the input
signal and the learned
latent variables C.

Jgac\ [ ome\
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van den Oord et al, 2019 “Representation Learning with Contrastive

Predictive Coding”
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e InfoNCE maximizes the mutual
iInformation between the input
signal and the learned latent
variables C.

e Strategies for sampling
negative and positive examples
determine the nature of
representations, e.g., whether
they are good for ASR or
Speaker ID.

fr(xirip,ct) = exp (zﬁkact)

log

==
-
-

fk($t+k7 Ct)

ij cX Ik (373'7 Ct)

Predictions

R fmimi T — .
— e — e — . -
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Zt+1 Zt+2 Zt+3 Zt+4
/genc\ /genc\ genc /genc\ /genc\ genc genc genc

Tt41 Tt42 Tt4+3 Ti+4

van den Oord et al, 2019 “Representation Learning with Contrastive

Predictive Coding”



e The CPC approach inspired many follow up work




e The CPC approach inspired many follow up work:

e With better architectures and normalization for stable
training.

Schneider et. al., 2019 "wav2vec: Unsupervised Pre-training for
Speech Recognition"

Kawakami et. al., 2020 "Learning Robust and Multilingual Speech
Representations”

Rivi'ere et. al., 2020 "Unsupervised pretraining transfers well across
languages”



e The CPC approach inspired many follow up work:
e With better architectures and normalization for stable
training.
e Bidirectional autoregressive components.

Schneider et. al., 2019 "wav2vec: Unsupervised Pre-training for
Speech Recognition"

Kawakami et. al., 2020 "Learning Robust and Multilingual Speech
Representations”

Rivi'ere et. al., 2020 "Unsupervised pretraining transfers well across
languages”



e The CPC approach inspired many follow up work:
e With better architectures and normalization for stable
training.
e Bidirectional autoregressive components.
e Which investigates the multilingual transfer of
representations.

Schneider et. al., 2019 "wav2vec: Unsupervised Pre-training for
Speech Recognition"

Kawakami et. al., 2020 "Learning Robust and Multilingual Speech
Representations”

Rivi'ere et. al., 2020 "Unsupervised pretraining transfers well across
languages"



wav2vec 2.0




Baevski et al, 2020 “wav2vec 2.0: A Framework for Self-Supervised Learning of
Speech Representations”



e The first approach to show significant improvements for
low-resource ASR.

Baevski et al, 2020 “wav2vec 2.0: A Framework for Self-Supervised Learning of
Speech Representations”



e The first approach to show significant improvements for
low-resource ASR.
e |mpressive results on multilingual representations.

Baevski et al, 2020 “wav2vec 2.0: A Framework for Self-Supervised Learning of
Speech Representations”



e The first approach to show significant improvements for
low-resource ASR.
e |mpressive results on multilingual representations.

e Strong performance on a wide range of downstream
speech tasks.

Baevski et al, 2020 “wav2vec 2.0: A Framework for Self-Supervised Learning of
Speech Representations”



Baevski et al, 2020 “wav2vec 2.0: A Framework for Self-Supervised Learning of
Speech Representations”
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Baevski et al, 2020 “wav2vec 2.0: A Framework for Self-Supervised Learning of
Speech Representations”
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Baevski et al, 2020 “wav2vec 2.0: A Framework for Self-Supervised Learning of

Speech Representations”




o 4

—
L

Vil
X 1t F X v X T
CNN Encoder

N

<
N

Baevski et al, 2020 “wav2vec 2.0: A Framework for Self-Supervised Learning of
Speech Representations”




o 4

—
L

LML T
X 1t Xkt X I
CNN Encoder

N

<
N

Baevski et al, 2020 “wav2vec 2.0: A Framework for Self-Supervised Learning of
Speech Representations”
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wav2vec 2.0: The pretext task

e T[he goalis to maximize
the similarity between the
learned contextual
representation and the
guantized input features
at the same position.
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wav2vec 2.0: The pretext task

e The goal is to maximize )
the similarity between the
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e The model learns an online quantization of audio
representations using a Gumbel softmax.

gumbels = (logits + gumbels) / tau # ~Gumbel(logits,tau)
y_soft = gumbels.softmax(dim)

if hard:
# Straight through.
index = y_soft.max(dim, keepdim=True) [1]
y_hard = torch.zeros_like(logits, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0)

ret = y_hard - y_soft.detach() + y_soft
else:

# Reparametrization trick.
ret = y_soft
return ret

Baevski et al, 2020 “wav2vec 2.0: A Framework for Self-Supervised Learning of
Speech Representations”



e Product quantization with more than T S
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e Product quantization with more than s
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maximize codebook diversity.

Baevski et al, 2020 “wav2vec 2.0: A Framework for Self-Supervised Learning of
Speech Representations”



e Product quantization with more than one T

Transformer

codebook yields better results. |M HZ ||z " @éﬂ @ éﬂ
e An entropy loss is added to the Gumbel &
softmax distribution to maximize i

codebook diversity.

e Negative examples are chosen from
masked segments in the same utterance
that don’t belong to the same codeword.

Baevski et al, 2020 “wav2vec 2.0: A Framework for Self-Supervised Learning of
Speech Representations”



e The first approach to get into single-digit WER on
Librispeech test-other using only 10 mins of labels.
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e The first approach to get into single-digit WER on
Librispeech test-other using only 10 mins of labels.

Unlabeled dev test

Model data s clean other clean other
10 min labeled

Discrete BERT [4] LS-960 4-gram 15.7 24.1 16.3 25.2

BASE L.S-960 4-gram 8.9 15.7 9.1 15.6

Transf. 6.6 13.2 6.9 12.9

LARGE L.S-960 Transf. 6.6 10.6 6.8 10.8

LV-60k Transf. 4.6 7.9 4.8 8.2

Baevski et al, 2020 “wav2vec 2.0: A Framework for Self-Supervised Learning of

Speech Representations”



e Itis the first self-supervised approach to produce
competitive results compared to semi-supervised learning
approaches.
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wav2vec 2.0: Results

Unlabeled dev test
- It 1S bl data LM clean other clean other

Supervised
COIT CTC Transf [51] e

CLM+Transf. 220  4.94 247 545 1rning

S2S Transf. [51] - CLM+Transf. 2.10 4.79 235  H.1]
app Transf. Transducer [60] - Transf. - - 2.0 4.6
ContextNet [17] - LSTM 1.9 3.9 1.9 4.1
Conformer [15] - LSTM 2.1 4.3 1.9 3.9
Semi-supervised
CTC Transf. + PL [51] LV-60k CLM+Transf. 2.10  4.79 233 4.54
S2S Transf. + PL [51] LV-60k CLM+Transf. 2.00 3.65 2.09 411
Iter. pseudo-labeling [58] LV-60k  4-gram+Transf. 1.85  3.26 2.10 4.01
Noisy student [42] LV-60k LSTM 1.6 34 1.7 3.4
This work
LARGE - from scratch - Transf. 1.7 4.3 2.1 4.6
BASE LS-960 Transf. 1.8 4.7 2.1 4.8
LARGE LS-960 Transf. 1.7 3.9 2.0 4.1
LV-60k Transf. 1.6 3.0 1.8 3.3

Baevski et al, 2020 “wav2vec 2.0: A Framework for Self-Supervised Learning of
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wav2vec 2.0: Results

Unlabeled dev test
O It 1S e data . clean other clean other

Supervised
COIT CTC Transf [51] E

CLM+Transf. 220  4.94 247 545 1rning

S2S Transf. [51] - CLM+Transf. 2.10 4.79 235  H.1]
app Transf. Transducer [60] - Transf. - - 2.0 4.6
ContextNet [17] - LSTM 1.9 3.9 1.9 4.1
Conformer [15] - LSTM 2.1 4.3 1.9 3.9
Semi-supervised
CTC Transf. + PL [51] LV-60k CLM+Transf. 2.10  4.79 233 4.54
S2S Transf. + PL [51] LV-60k CLM+Transf. 2.00 3.65 2.09 4.11
Iter. pseudo-labeling [58] LV-60k 4-oram+Transf. 1.85 3.26 2.10 4.01
Noisy student [42] LV-60k LSTM 1.6 3.4 1.7 3.4
This work
LARGE - from scratch - Transf. 1.7 4.3 2.1 4.6
BASE LS-960 Transf. 1.8 4.7 2.1 4.8
[LARGE [.S-960 Transf. | §64 3.9 2.0 4.1
LV-60k Transf. 1.6 3.0 1.8 3.3

Baevski et al, 2020 “wav2vec 2.0: A Framework for Self-Supervised Learning of
Speech Representations”



e wav2vec 2.0 inspired many follow up work:

Conneau et. al., 2020 "Unsupervised Cross-lingual Representation Learning for Speech Recognition"
Sadhu et. al., 2021 "Wav2vec-C: A Self-supervised Model for Speech Representation Learning"

Chung et. al., 2021 "W2v-BERT: Combining Contrastive Learning and Masked Language Modeling for Self-
Supervised Speech Pre-Training"

Babu et. al., 2021 "XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale”



e wav2vec 2.0 inspired many follow up work:
e Multilingual pretraining.

Conneau et. al., 2020 "Unsupervised Cross-lingual Representation Learning for Speech Recognition"
Sadhu et. al., 2021 "Wav2vec-C: A Self-supervised Model for Speech Representation Learning"
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Supervised Speech Pre-Training"

Babu et. al., 2021 "XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale"



e wav2vec 2.0 inspired many follow up work:
e Multilingual pretraining.
e With more effective quantization.

Conneau et. al., 2020 "Unsupervised Cross-lingual Representation Learning for Speech Recognition"
Sadhu et. al., 2021 "Wav2vec-C: A Self-supervised Model for Speech Representation Learning"

Chung et. al., 2021 "W2v-BERT: Combining Contrastive Learning and Masked Language Modeling for Self-
Supervised Speech Pre-Training"

Babu et. al., 2021 "XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale"



e wav2vec 2.0 inspired many follow up work:
Multilingual pretraining.

With more effective quantization.

Combining contrastive and predictive losses.

Conneau et. al., 2020 "Unsupervised Cross-lingual Representation Learning for Speech Recognition"
Sadhu et. al., 2021 "Wav2vec-C: A Self-supervised Model for Speech Representation Learning"

Chung et. al., 2021 "W2v-BERT: Combining Contrastive Learning and Masked Language Modeling for Self-
Supervised Speech Pre-Training"

Babu et. al., 2021 "XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale"



Speech representation learning methods
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approach
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Predictive

approach

D

Generativ
e
approach
es



Hidden Unit BERT (HUBERT)




Hsu et al 2021, “HUBERT: Self-Supervised Speech Representation Learning by Masked
Prediction of Hidden Units”



e A simple method to apply BERT style representation
learning for speech.
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e A simple method to apply BERT style representation
learning for speech.

e Matched or beat the SOTA on ASR while being the best for
many speech tasks.
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e A simple method to apply BERT style representation
learning for speech.

e Matched or beat the SOTA on ASR while being the best for
many speech tasks.

e With its high-quality discrete units, HUBERT facilitated
Textless NLP research.

Hsu et al 2021, “HUBERT: Self-Supervised Speech Representation Learning by Masked
Prediction of Hidden Units”
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e [he K-means
guantizer produces
frame-level labels.

Hsu et al 2021, “HUBERT: Self-Supervised Speech Representation Learning by Masked
Prediction of Hidden Units”
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e Although the frame
labels are imperfect,

their consistency is T
more important!
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e Although the frame
labels are imperfect,

| | _ 2 iy . T -
their consistency is T . ’ .
more important! ——
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e Then the process can
be repeated using
learned HUBERT
features from a
previous iteration.
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e Then the process can
be repeated using
learned HUBERT
features from a
previous iteration.
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e A small codebook size, e.g., 50,
100, is used for the initial training

Transformer

: : : & F
iteration to focus on phonetic - G - D

differences rather than speaker
and style.

Hsu et al 2021, “HUBERT: Self-Supervised Speech Representation Learning by Masked
Prediction of Hidden Units”



e A small codebook size, e.g., 50, 100, is
used for the initial training iteration to focus
on phonetic differences rather than
speaker and style.

e Forthe subsequent two iterations, layers 6
and 9 of the base architecture (12 layers)
are used for the clustering steps. They
found empirically to contain higher quality
features over many speech tasks.

Transformer
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e Matched or beat the SOTA on ASR.
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e Matched or beat the SOTA on ASR.
ASR

test-other WER
O AN W hA OO N ® ©

10m 1hr 10hr 100hr 960hr

wav2vec 2.0 (L) ®wHuBERT (L) =HuBERT (XL)

Hsu et al 2021, “HUBERT: Self-Supervised Speech Representation Learning by Masked
Prediction of Hidden Units”



HUBERT: Results

e Matched or beat the SOTA on ASR.
e [he best representatlons for multiple downstream tasks.

SID ASR (WER) QbE ASV SD

PER i, Acc T Acc T Acc T Acc T wiol wILMJ| | MTWV?® F1 T CER 4 | EER] | DER |

FBANK 82.01 8.63 9.10 | 8.5E-4 | 35.39 (| 23.18 15.21 0.0058 | 69.64 52.94 9.56 10.05
PASE+ [16] 58.95 | 82.54 | 29.82 37.99 | 57.86 || 24.92 16.61 0.0072 | 62.14 60.17 11.61 8.68
APC [7] 42.21 | 91.01 | 74.69 60.42 | 59.33 || 21.61 15.09 0.0310 | 70.46 50.89 8.56 10.53
VQ-APC [32] 41.49 | 91.11 | 74.48 60.15 | 59.66 || 21.72 15.37 0.0251 | 68.53 5291 8.72 10.45
NPC [33] 43.69 | 88.96 | 69.44 55.92 | 59.08 || 20.94 14.69 0.0246 | 72.79 48.44 9.4 9.34
Mockingjay [8] 70.84 | 83.67 | 34.33 32.29 | 50.28 || 23.72 15.94 6.6E-04 | 61.59 58.89 11.66 10.54
TERA [9] 49.17 | 89.48 | 57.90 57.57 | 56.27 || 18.45 12.44 0.0013 | 67.50 54.17 15.89 9.96
modified CPC [34] 42.54 | 91.88 | 64.09 39.63 | 60.96 || 20.02 13.57 0.0326 | 71.19 49.91 12.86 10.38
wav2vec [12] 3224 | 95.59 | 84.92 56.56 | 59.79 || 16.40 11.30 0.0485 | 76.37 43.71 7.99 9.9
vg-wav2vec [13] 3424 | 93.38 | 85.68 38.80 | 58.24 || 18.70 12.69 0.0410 | 77.68 41.54 10.38 9.93
wav2vec 2.0 Base [14] 5.56 | 96.23 | 92.35 75.18 | 63.43 9.57 6.32 0.0233 | 88.30 24.77 6.02 6.08
wav2vec 2.0 Large [14] 475 | 96.66 | 95.28 86.14 | 65.64 3.75 3.10 0.0489 | 86.94 27.80 5.65 5.62
HuBERT Base [35] 5.05 | 96.30 | 98.34 81.42 | 64.92 6.74 4.93 0.0736 | 88.53 25.20 5.11 5.88
HuBERT Large [35] 3.28 | 95.29 | 98.76 90.33 | 67.62 3.67 291 0.0353 | 89.81 21.76 5.98 5.75

Hsu et al 2021, “HUBERT: Self-Supervised Speech Representation Learning by Masked
Prediction of Hidden Units”



e HUBERT inspired many follow up work:

Chen et. al., 2021 "WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack
Speech Processing"

Chiu et. al. 2022 "Self-supervised Learning with Random-projection Quantizer for
Speech Recognition”

Shi et. al. 2022 "Learning Audio-Visual Speech Representation by Masked
Multimodal Cluster Prediction”

Lakhotia et. al., 2021 "Generative Spoken Language Modeling from Raw Audio"



e HUBERT inspired many follow up work:
e Combined masked prediction and denoising pre-training.
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e HUBERT inspired many follow up work:
e Combined masked prediction and denoising pre-training.
e Random clustering is as effective in learning
representations as k-means.
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e HUBERT inspired many follow up work:
e Combined masked prediction and denoising pre-training.
e Random clustering is as effective in learning
representations as k-means.
e Multimodal clustering for audio-visual ASR.

Chen et. al., 2021 "WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack
Speech Processing"

Chiu et. al. 2022 "Self-supervised Learning with Random-projection Quantizer for
Speech Recognition”

Shi et. al. 2022 "Learning Audio-Visual Speech Representation by Masked
Multimodal Cluster Prediction”

Lakhotia et. al., 2021 "Generative Spoken Language Modeling from Raw Audio"



e HUBERT inspired many follow up work:

Combined masked prediction and denoising pre-training.
Random clustering is as effective in learning representations
as k-means.

Multimodal clustering for audio-visual ASR.

High-quality discrete units facilitated textless NLP research
for speech generation.

Chen et. al., 2021 "WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack
Speech Processing"

Chiu et. al. 2022 "Self-supervised Learning with Random-projection Quantizer for
Speech Recognition”

Shi et. al. 2022 "Learning Audio-Visual Speech Representation by Masked
Multimodal Cluster Prediction"

Lakhotia et. al., 2021 "Generative Spoken Language Modeling from Raw Audio"



HuBERT: Detalls: /]\

o Small codebook sizes, e.g. 100,
560.
o Thelossis Only applled over Bad Teacher (e.g., K-means on MFCC)

v v v v v v

masked regions. 7] D] 2] D] e De]

> /FIUBERT Transformer \ ;

Lm(0; X, M,Y) =) logp(y: | X,1) s e e ey e v |
teM z; (Msk] [msk] [MSKI] z: z: |

o The learned latent features ci._ NN Encoder 2
be qu antized for another e

learning iteration.
o GMMs or HMMs may replace k-
means for better initial labels.
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Results on Libri-light;

o Using at most three clustering
steps, HUBERT is as effective or
better than Wav2Vec 2.0

o Using a 1B model improves the
performance across all sizes of
labeled data for the challenging
dev/test_other condition (up to 19%
andi13%).

D
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Results on SUPERB — last Iaye(/]\

PR KS IC SID ER ASR (WER) QbE SF SV SD

PER] | AcctT | AccT | Acct | Acct || wol WwIMJ| | MTWVYT | F11 CERJ | EER| | DER|

FBANK 82.01 8.63 9.10 | 8.5E-4 | 35.39 || 23.18 15.21 0.0058 | 69.64  52.94 9.56 10.05
PASE+ [16] 58.88 | 82.37 | 30.29 35.84 | 57.64 || 24.92 16.61 7.0E-4 | 60.41 62.77 10.91 8.52
APC [7] 41.85 | 91.04 | 74.64 | 59.79 | 58.84 || 21.61 15.09 0.0268 | 71.26  50.76 8.81 10.72
VQ-APC [32] 42.86 | 90.52 | 70.52 | 49.57 | 58.31 || 21.72 15.37 0.0205 | 69.62  52.21 9.29 10.49
NPC [33] 52.67 | 88.54 | 64.04 | 50.77 | 59.55 || 20.94 14.69 0.0220 | 6743  54.63 10.28 9.59
Mockingjay [8] 80.01 | 82.67 | 28.87 34.50 | 45.72 || 23.72 15.94 3.1E-10 | 60.83  61.15 | 23.22 11.24
TERA [9] 47.53 | 88.09 48.8 58.67 | 54.76 || 18.45 12.44 8.7E-5 | 63.28  57.91 16.49 9.54
modified CPC [34] 41.66 | 92.02 | 65.01 42.29 | 59.28 || 20.02 13.57 0.0061 | 74.18  46.66 9.67 11.00
wav2vec [12] 32.39 | 94.09 | 78.91 44.88 | 58.17 || 16.40 11.30 0.0307 | 77.52  41.75 9.83 10.79
vg-wav2vec [13] 53.49 | 92.28 59.4 39.04 | 55.89 || 18.70 12.69 0.0302 | 70.57  50.16 9.50 9.93
wav2vec 2.0 Base [14] 28.37 | 9231 | 58.34 | 45.62 | 56.93 9.57 6.32 8.8E-4 | 79.94 3781 9.69 7.48
HuBERT Base [35] 6.85 | 9598 | 9594 | 64.84 | 62.94 6.74 4.93 0.0759 | 86.24  28.52 7.22 6.76
HuBERT Large [35] 3.72 | 93.15 | 9837 | 66.40 | 64.93 3.67 291 0.0360 | 88.68  23.05 7.70 6.23
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Results on SUPERB — Weighted sum of layers

PR KS IC SID ER ASR (WER) QbE SF ASV SD

PER| | AccT | Acct | AcctT | Acct || wol wWIM] | MTWV t F11+ CERJ | EER|] | DER |

FBANK 82.01 8.63 9.10 | 8.5E-4 | 35.39 || 23.18 15.21 0.0058 | 69.64 52.94 9.56 10.05
PASE+ [16] 58.95 | 82.54 | 29.82 37.99 | 57.86 || 24.92 16.61 0.0072 | 62.14 60.17 11.61 8.68
APC [7] 42.21 | 91.01 | 74.69 60.42 | 59.33 21.61 15.09 0.0310 | 70.46 50.89 8.56 10.53
VQ-APC [32] 41.49 | 91.11 | 74.48 60.15 | 59.66 || 21.72 15.37 0.0251 | 68.53 52.91 8.72 10.45
NPC [33] 43.69 | 88.96 | 69.44 55.92 | 59.08 || 20.94 14.69 0.0246 | 72.79 48.44 9.4 9.34
Mockingjay [8] 70.84 | 83.67 | 34.33 32.29 | 50.28 || 23.72 15.94 6.6E-04 | 61.59 58.89 11.66 10.54
TERA [9] 49.17 | 89.48 | 57.90 57.57 | 56.27 18.45 12.44 0.0013 | 67.50 54.17 15.89 9.96
modified CPC [34] 42.54 | 91.88 | 64.09 39.63 | 60.96 || 20.02 13.57 0.0326 | 71.19 49.91 12.86 10.38
wav2vec [12] 32.24 | 95.59 | 84.92 56.56 | 59.79 16.40 11.30 0.0485 | 76.37 43.71 7.99 9.9
vg-wav2vec [13] 3424 | 93.38 | 85.68 38.80 | 58.24 18.70 12.69 0.0410 | 77.68 41.54 10.38 9.93
wav2vec 2.0 Base [14] 5.56 | 96.23 | 92.35 75.18 | 63.43 9.57 6.32 0.0233 | 88.30 24.77 6.02 6.08
wav2vec 2.0 Large [14] 475 | 96.66 | 95.28 86.14 | 65.64 3.75 3.10 0.0489 | 86.94 27.80 5.65 5.62
HuBERT Base [35] 5.05 | 96.30 | 98.34 81.42 | 64.92 6.74 4.93 0.0736 | 88.53 25.20 5.11 5.88
HuBERT Large [35] 3.28 | 95.29 | 98.76 90.33 | 67.62 3.67 291 0.0353 | 89.81 21.76 5.98 5.75
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