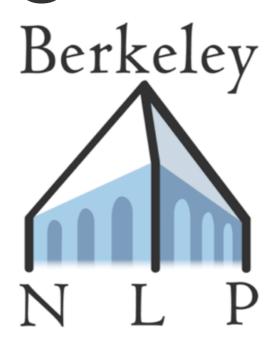
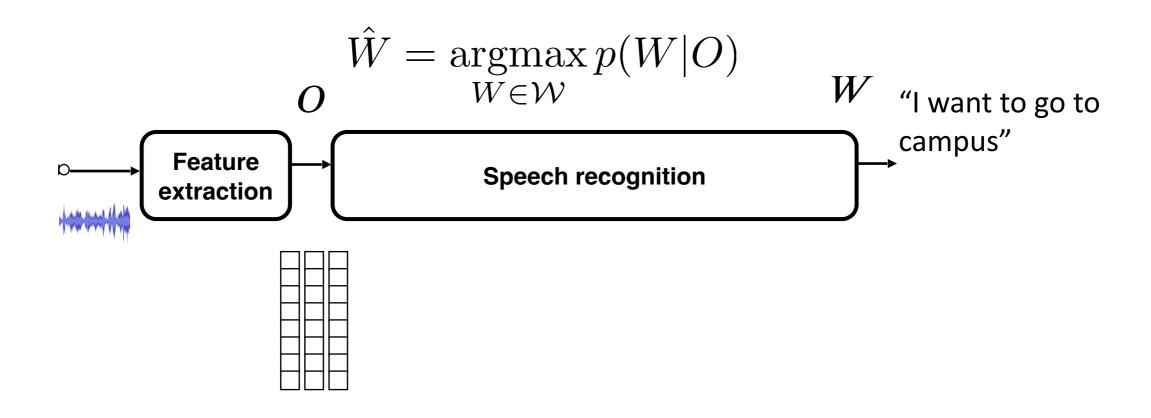
Self-Supervised Learning for Speech

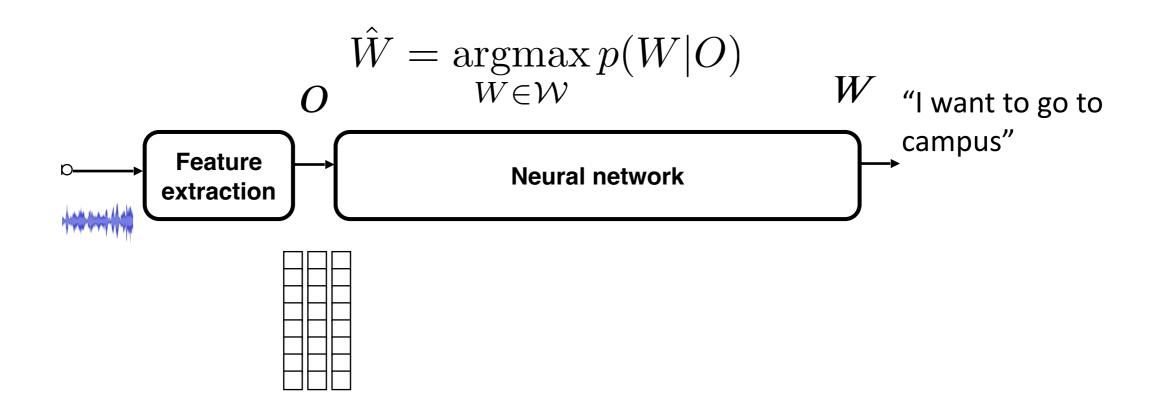


EECS 183/283a: Natural Language Processing

Recap: Speech recognition



End-to-end speech recognition



How to obtain the posterior p(W|O)

• We just replace it with a neural network-based function $f^{nn}(\cdot)$

$$\operatorname*{argmax}_{W} p(W|O) = \operatorname*{argmax}_{W} f^{\mathrm{nn}}(W|O)$$

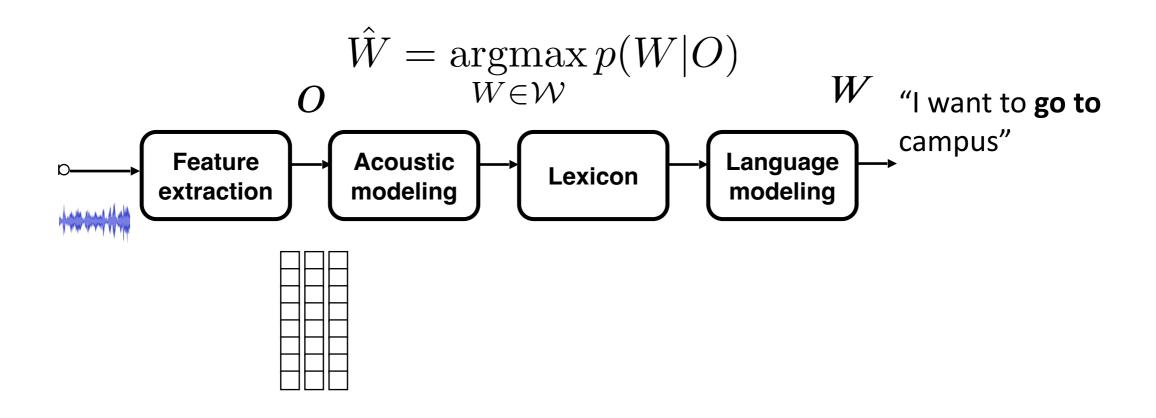
- Easy and simple, no math (in this level), however
- W is a sequence! $W = (w_n \in \mathcal{V} | n = 1, ..., N)$
 - Very difficult to deal with it
 - Say N = 10, $|\mathcal{V}| = 100$, we have to deal with 100^{10} possible sequences
 - Also, the length N is variable
 - We have to use a special neural network (e.g., attention, CTC, and RNN-transducer)

- Classical speech recognition
 - Pipeline

Speech recognition



Classical (non-end-to-end) speech recognition



Speech -> Text

Text W: I want to go to the campus

Speech -> Phoneme -> Text

Speech *o*:

Phoneme L: AY W AA N T T UW G OW T UW K AE M P AH S

Text W: I want to go to campus

How to obtain the posterior p(W|O)

- Factorize the model with phoneme
 - Let $L=(l_i\in\{/\mathrm{AA}/,\,/\mathrm{AE}/,\cdots\}|i=1,\cdots,J)$ be a phoneme sequence

$$\arg\max_{W} p(W|O) = \arg\max_{W} \sum_{L} p(W,L|O) \qquad \text{Sum rule}$$

$$= \arg\max_{W} \sum_{L} \frac{p(O|W,L)p(L|W)p(W)}{p(O)} \qquad \text{Bayes+ Product rule}$$

$$= \arg\max_{W} \sum_{L} p(O|W,L)p(L|W)p(W) \qquad \text{does not depend}$$
 on W
$$= \arg\max_{W} \sum_{L} p(O|L)p(L|W)p(W) \qquad \text{Conditional independence}$$
 assumption

Note: the right hand side is not the probability as it lacks a sum to one constraint

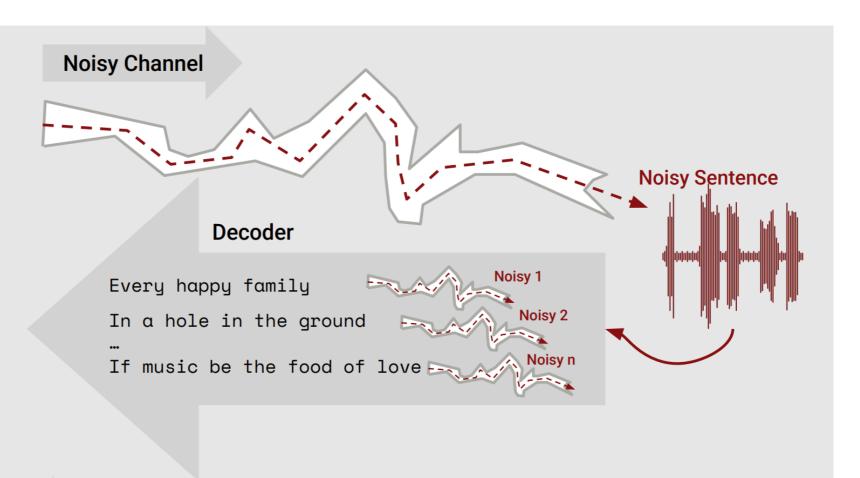
Noisy channel model

Source Sentence:

If music be the food of love...

Guess at Source

If music be the food of love...



$$\underset{W}{\operatorname{argmax}} p(W \mid O) = \underset{W}{\operatorname{argmax}} p(O \mid W) p(W) \approx \underset{W}{\operatorname{argmax}} \sum_{L} p(O \mid L) p(L \mid W) p(W)$$

Speech recognition

• p(O | L):

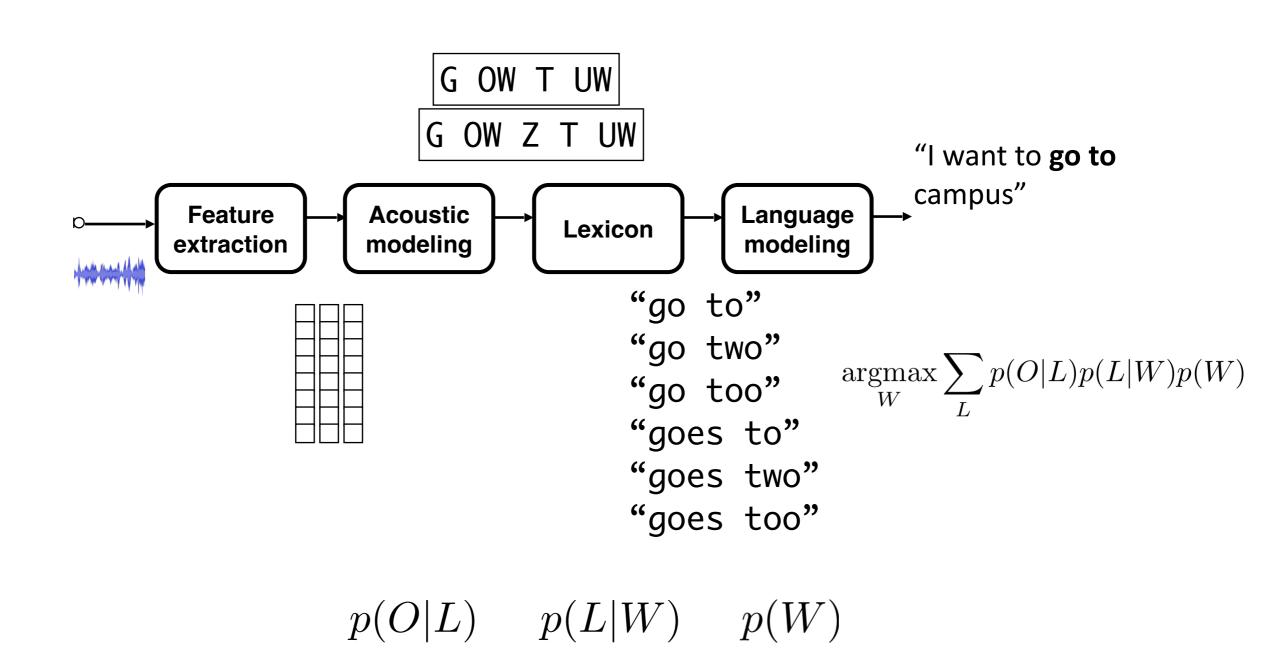
Acoustic model (Hidden Markov model) Lexicon

• p(L|W):

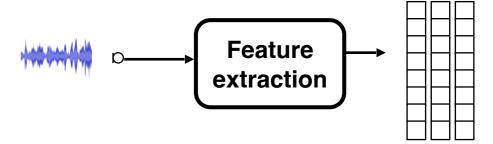
Language model (n-gram)

• p(W):

Speech recognition pipeline

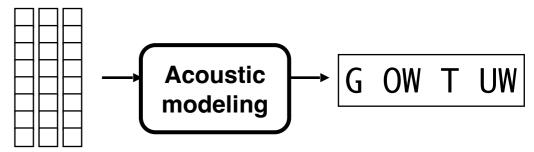


Waveform to speech feature



- Performed by so-called feature extraction module
 - Mel-frequency cepstral coefficient (MFCC), Perceptual Linear Prediction (PLP) used for Gaussian mixture model (GMM)
 - Log Mel filterbank used for deep neural network (DNN)
- Time scale
 - 0.0625 milliseconds (16kHz) to 10 milliseconds
- Type of values
 - Scalar (or discrete) to 12—40 dimensional vector

Speech feature to phoneme



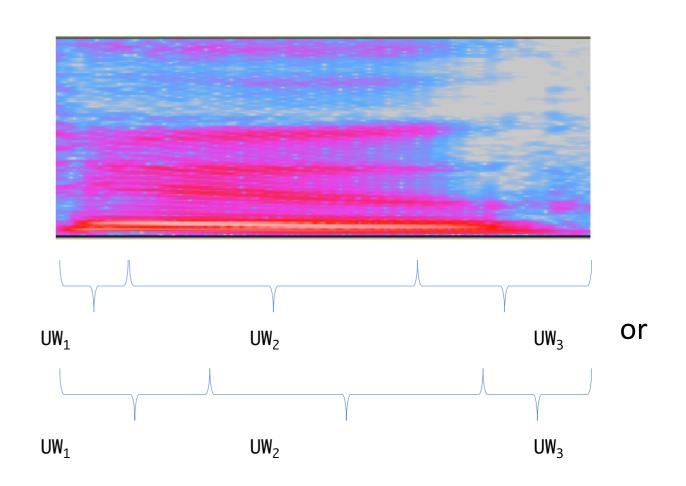
- Performed by so-called acoustic modeling module
 - Hidden Markov model (HMM) with GMM as an emission probability function
 - Hidden Markov model (HMM) with DNN as an emission probability function
- Time scale
 - 10 milliseconds to ~100 milliseconds (depending on a phoneme)
- Type of values
 - 12-dimensional continuous vector to 50 categorical value (~6bit)
- The most critical component to get the ASR performance
- It can be a probability of possible phoneme sequences, e.g.,

G OW T UW or G OW Z T UW with some scores

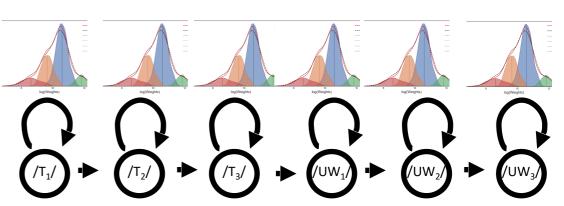
Acoustic model p(O|L)

- O and L are different lengths
- Align speech features and phoneme sequences by using HMM

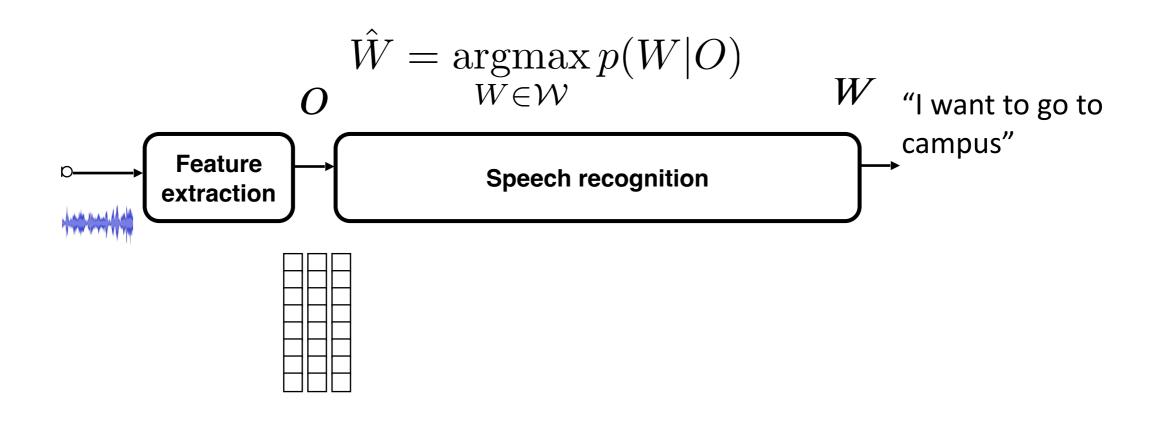
 $\begin{tabular}{ll} \bullet & {\bf Provide} \ p(O \, \Big| \, L) \ {\bf based \ on \ this} \\ & {\bf alignment \ and \ model} \\ \end{tabular}$



 Output distributions can be modeled using Gaussian Mixture Models (Max. Likelihood parameters of the distributions)



Speech recognition



End-to-End ASR

- Direct mapping function from speech feature sequence o
 to text w
- Usually, it does not deal with the phoneme-based intermediate representation
- Mainly three architectures
 - Attention-based
 - Decoder-only is also included here (not fully end-to-end)
 - Connectionist temporal classification (CTC)
 - Recurrent neural network transducer (RNN-T)

HMM-based (Classical)

CTC

RNNtransducer Attentionbased

Attention-based ASR

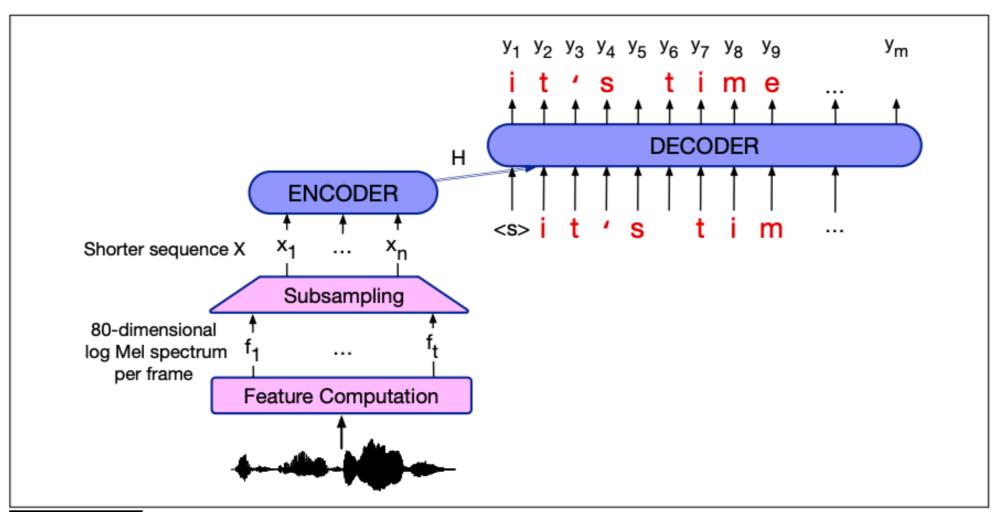


Figure 15.5 Schematic architecture for an encoder-decoder speech recognizer.

Listen Attend & Spell (2016)

Attention-based ASR

- Our staring point p(W|O)
 - Input: $O = (\mathbf{o}_t | t = 1,...,T)$
 - It is difficult to deal with $W = (w_i \in \mathcal{V} | i = 1,..., N)$
 - $T \neq N$
- Instead, we factorize p(W|O) as follows based on a probabilistic chain rule

$$p(W|O) = \prod_{i=1}^{N} p(w_i|w_{1:i-1}, O)$$

Attention-based ASR

- Our staring point p(W|O)
 - Input: $O = (\mathbf{o}_t | t = 1,...,T)$
 - It is difficult to deal with $W = (w_i \in \mathcal{V} | i = 1,..., N)$
 - $T \neq N$
- Instead, we factorize p(W|O) as follows based on a probabilistic chain rule

$$p(W|O) = \prod_{i=1}^{N} p(w_i|w_{1:i-1}, O)$$

- This neural network is handled by an attention-based method to align the input and output (soft alignments)
- We usually do not use the phoneme

Whisper (OpenAI)

 $p(W|O) = \prod_{i=1}^{N} p(w_i|w_{1:i-1}, O)$

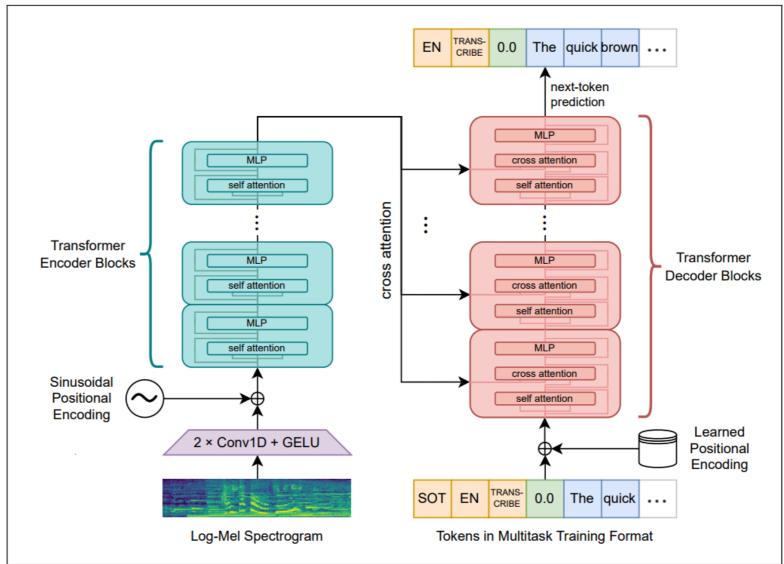
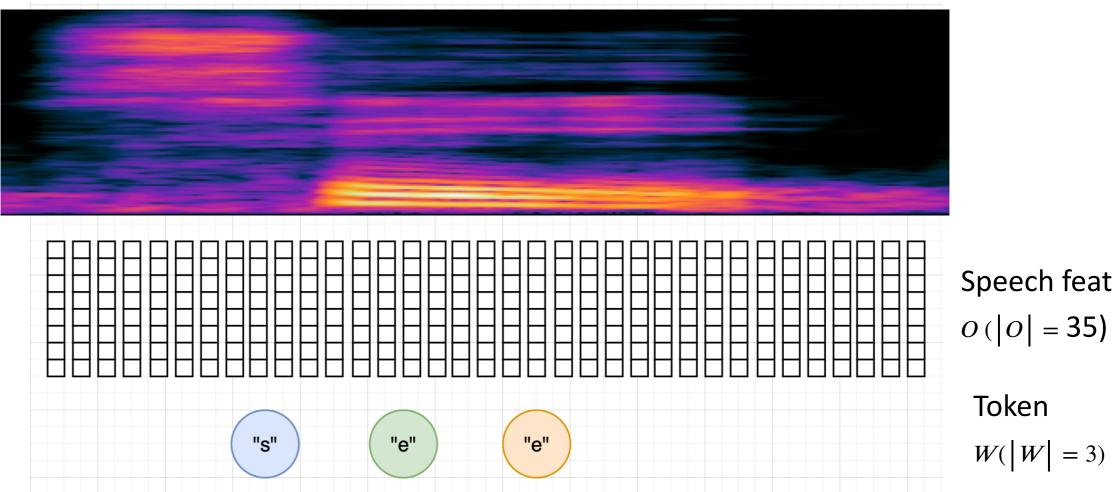


Figure 15.6 A sketch of the Whisper architecture from Radford et al. (2023). Because Whisper is a multitask system that also does translation and diarization (we'll discuss these non-ASR tasks in the following chapter), Whisper's transcription format has a Start of Transcript (SOT) token, a language tag, and then an instruction token for whether to transcribe or translate.

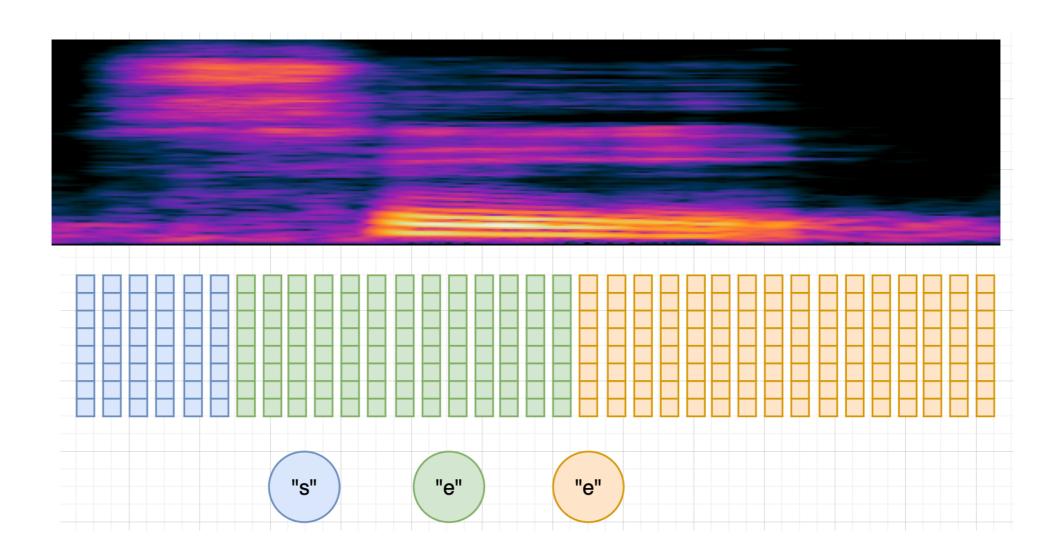
Alignments



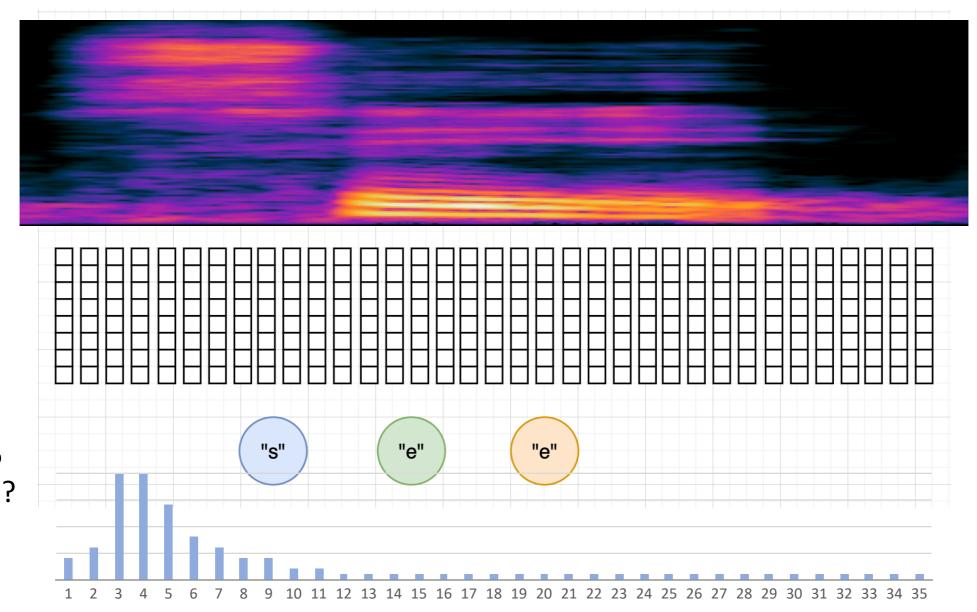
Speech features

$$W(|W|=3)$$

Hard Alignments

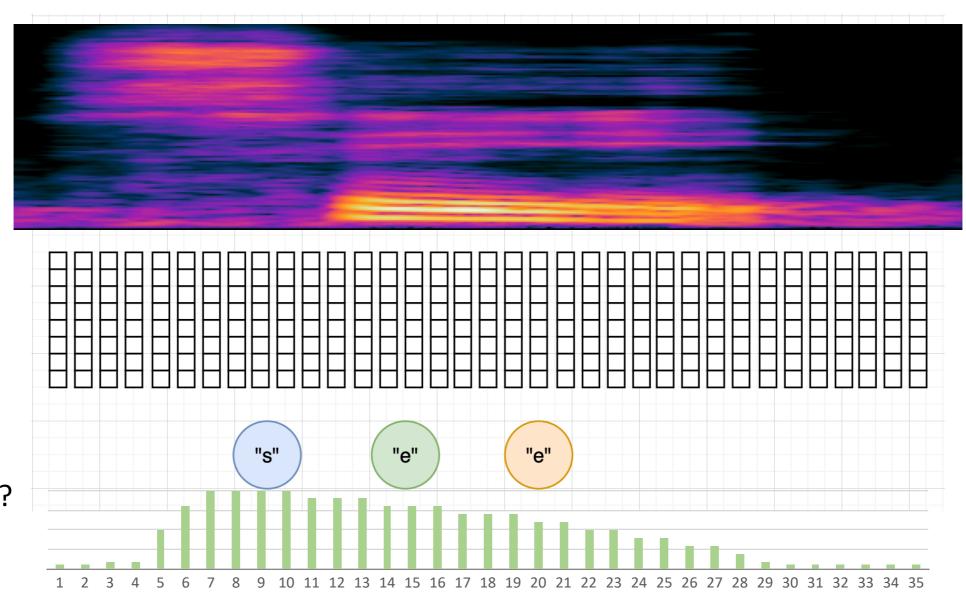


Soft alignments



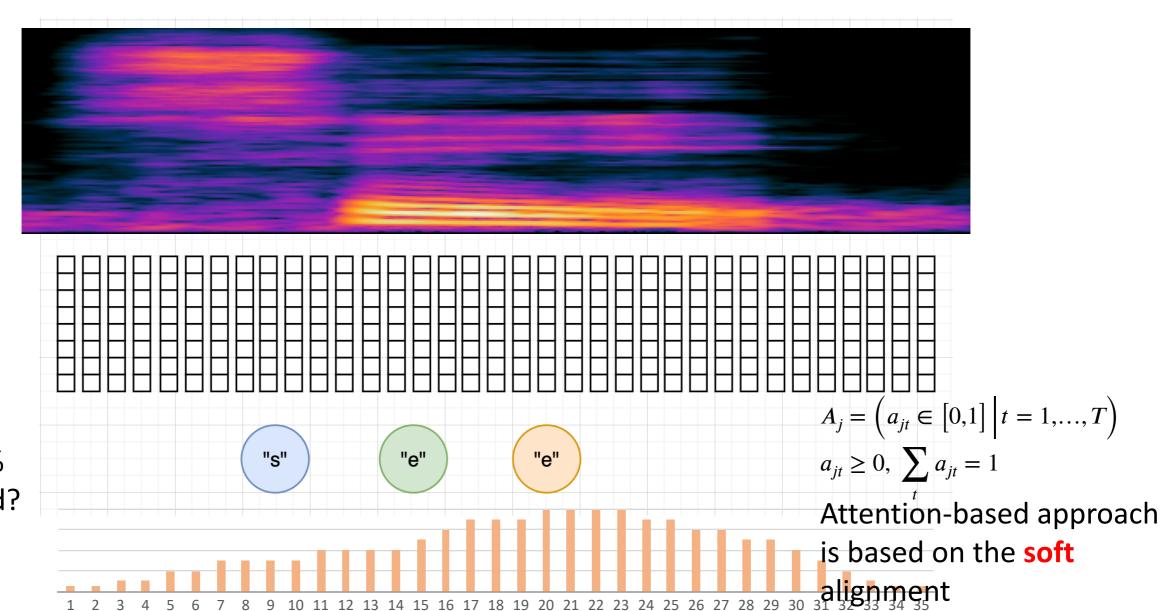
How many % "s" is aligned?

Soft alignments



How many % "e" is aligned?

Soft alignments



How many % "e" is aligned?

Connectionist Temporal Classification

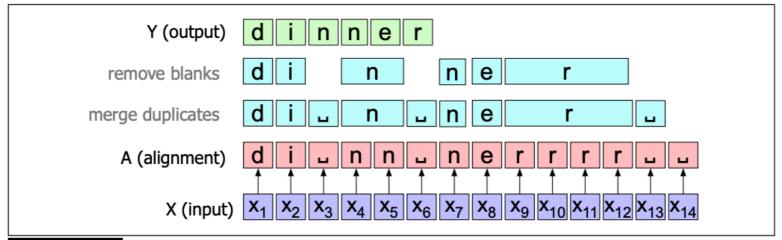


Figure 15.13 The CTC collapsing function B, showing the space blank character \Box ; repeated (consecutive) characters in an alignment A are removed to form the output Y.

The CTC collapsing function is many-to-one; lots of different alignments map to the same output string. For example, the alignment shown in Fig. 15.13 is not the only alignment that results in the string *dinner*. Fig. 15.14 shows some other alignments that would produce the same output.

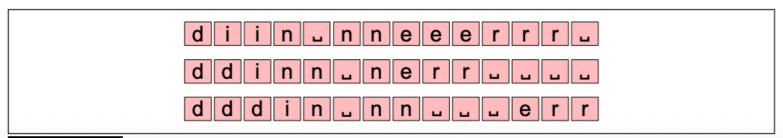


Figure 15.14 Three other legitimate alignments producing the transcript *dinner*.

RNN-Transducer

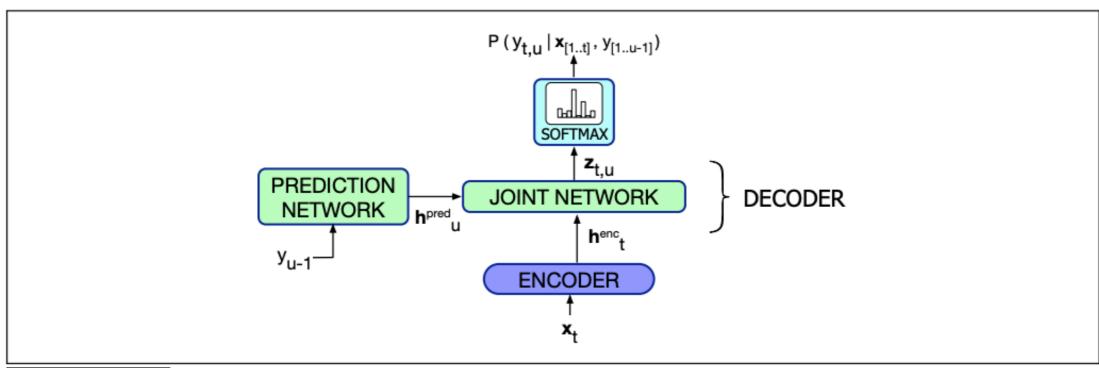
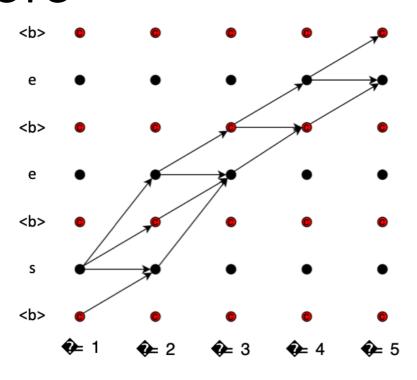


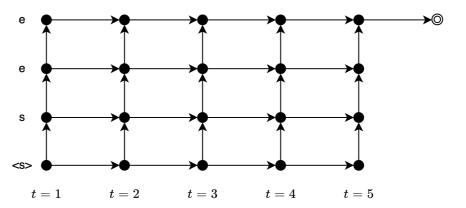
Figure 15.17 The RNN-T model computing the output token distribution at time t by integrating the output of a CTC acoustic encoder and a separate 'predictor' language model.

CTC vs. RNN-T

• CTC



• RNN-transducer

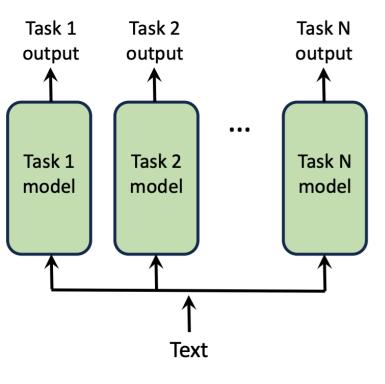


Today's Agenda

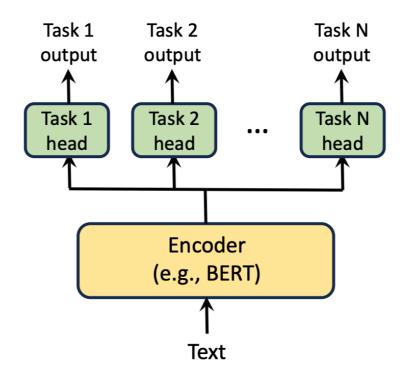
Self-Supervised Learning for Speech

Evolution of (Text) Foundation Models

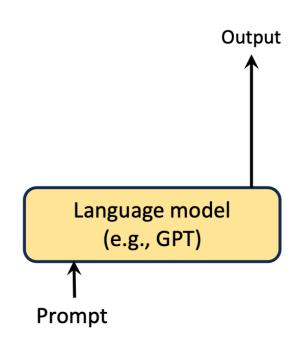
The task-specific model era (- 2018)



The encoder era (2018 - 2022)

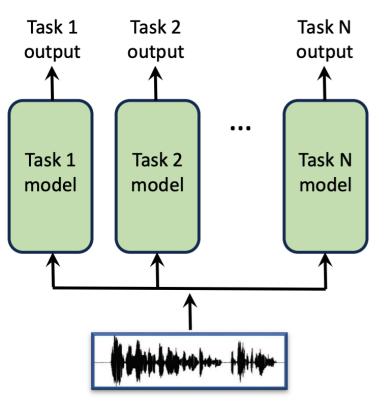


The large language model era (2022 -)

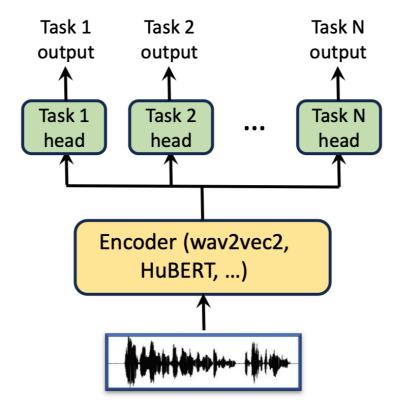


Evolution of (Speech) Foundation Models/

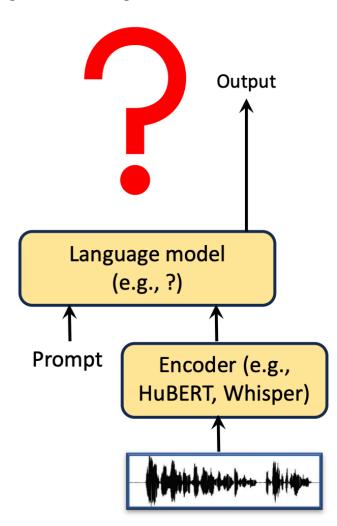
The task-specific model era (- 2020)



The speech encoder era (2020 -)



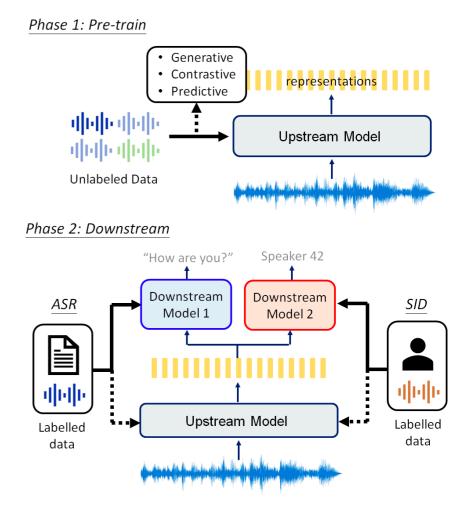
The spoken large language model era (2024? -)



Self-supervised learning

The setting:

- 1. A family of downstream tasks in mind (*The main motivational difference*).
- 2. Lots of unlabeled in-domain data.
- 3. A small fraction of labeled data.



Self-supervised learning

One basic procedure:

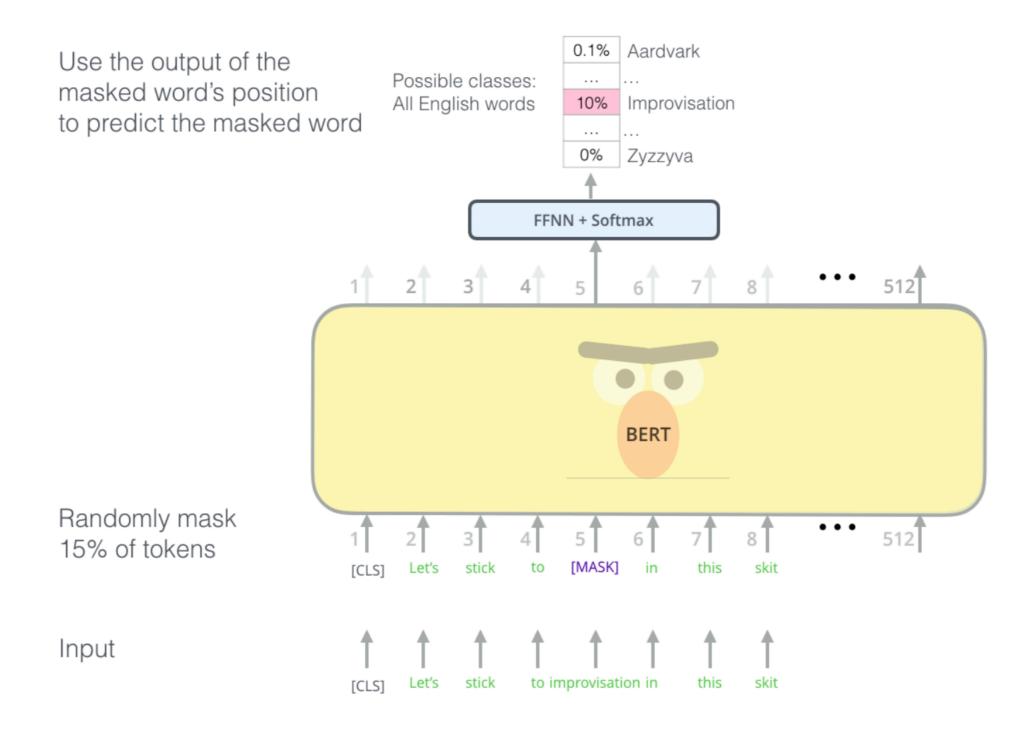
- 1. Design a "pretext" task over the input space. Examples:
 - + Predict the future part of the signal given the past
 - + Predict a masked portion of the signal given the unmasked one.
- + Reconstruct the input through a quantization or extreme compression.
- + Distinguish similar "positive" samples from different "negative" ones.
- Use the pretext task for training the neural network using the unlabeled data.
- 3. Fine-tune the pre-trained network on the labeled data.

Self Supervised Learning

Sometimes learners set up tasks for themselves to solve...

- Even if we only have unlabeled data, we may be able to define "pretext tasks" from the data alone
- A good pretext task is one that requires us to represent the "useful" information in the input in order to solve it well

Self Supervised Learning -Text



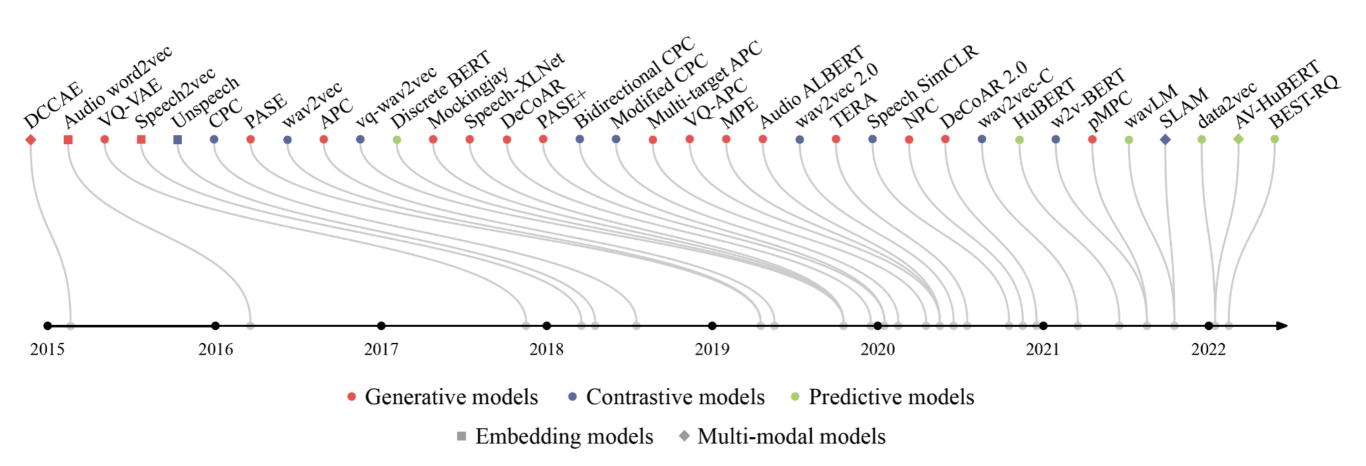
 Speech inputs have a variable number of lexical units per sequence.

- Speech inputs have a variable number of lexical units per sequence.
- Speech is a long sequence that doesn't have segment boundaries.

- Speech inputs have a variable number of lexical units per sequence.
- Speech is a long sequence that doesn't have segment boundaries.
- Speech is continuous without a predefined dictionary of units to explicitly model in the self-supervised setting.

- Speech inputs have a variable number of lexical units per sequence.
- Speech is a long sequence that doesn't have segment boundaries.
- Speech is continuous without a predefined dictionary of units to explicitly model in the self-supervised setting.
- Speech processing tasks might require orthogonal information, e.g., ASR and Speaker ID.

SSL methods for Speech



Contrastive approaches

Predictive approaches

Generative approaches

Contrastive Predictive Coding (CPC)

 The first successful representation learning approach for speech data.

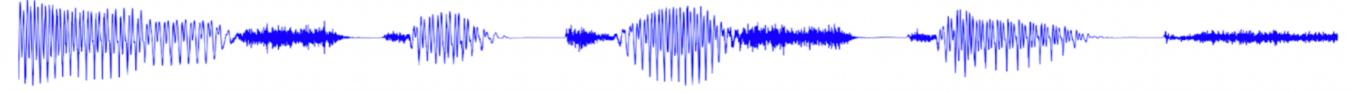
- The first successful representation learning approach for speech data.
- It triggered lots of research in speech representation learning.

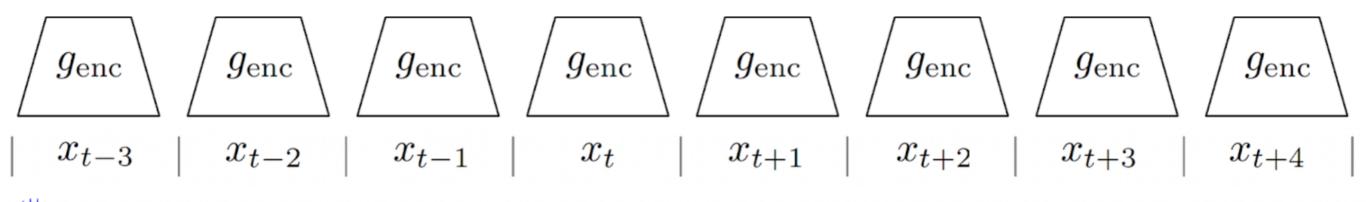
 Distinguish correct (positive) samples from wrong (negative) ones.

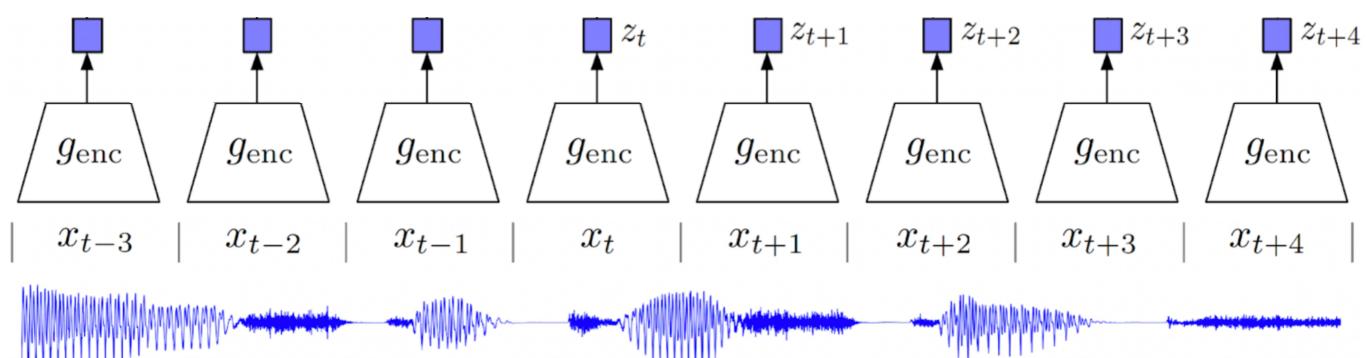
- Distinguish correct (positive) samples from wrong (negative) ones.
- But, how do we choose positive and negative examples?

van den Oord et al, 2019 "Representation Learning with Contrastive Predictive Coding"

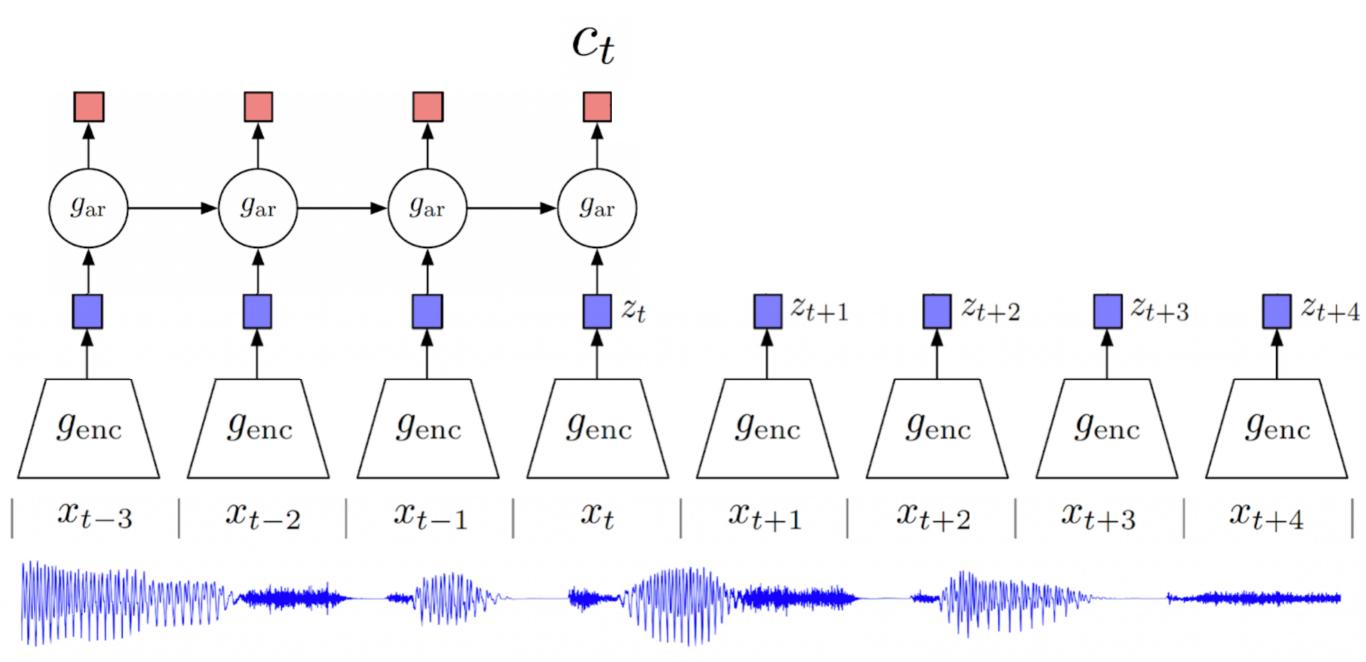
$$x_{t-3} \mid x_{t-2} \mid x_{t-1} \mid x_{t} \mid x_{t+1} \mid x_{t+2} \mid x_{t+3} \mid x_{t+4}$$

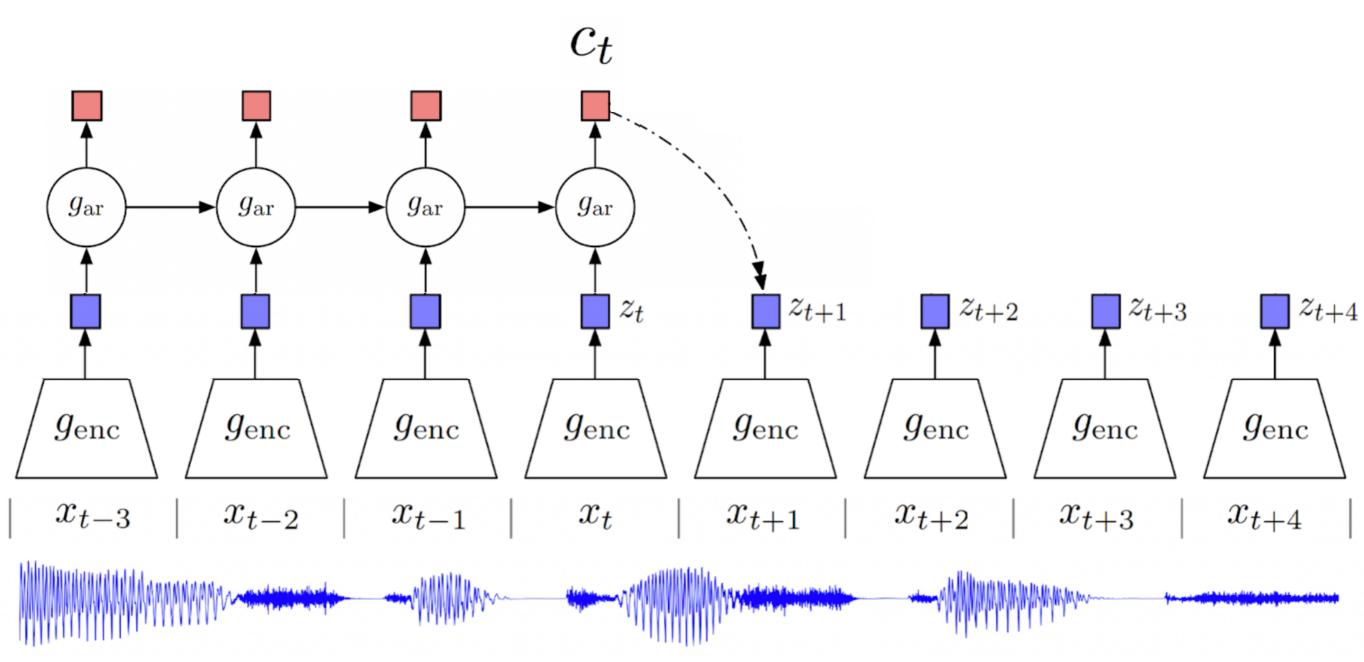


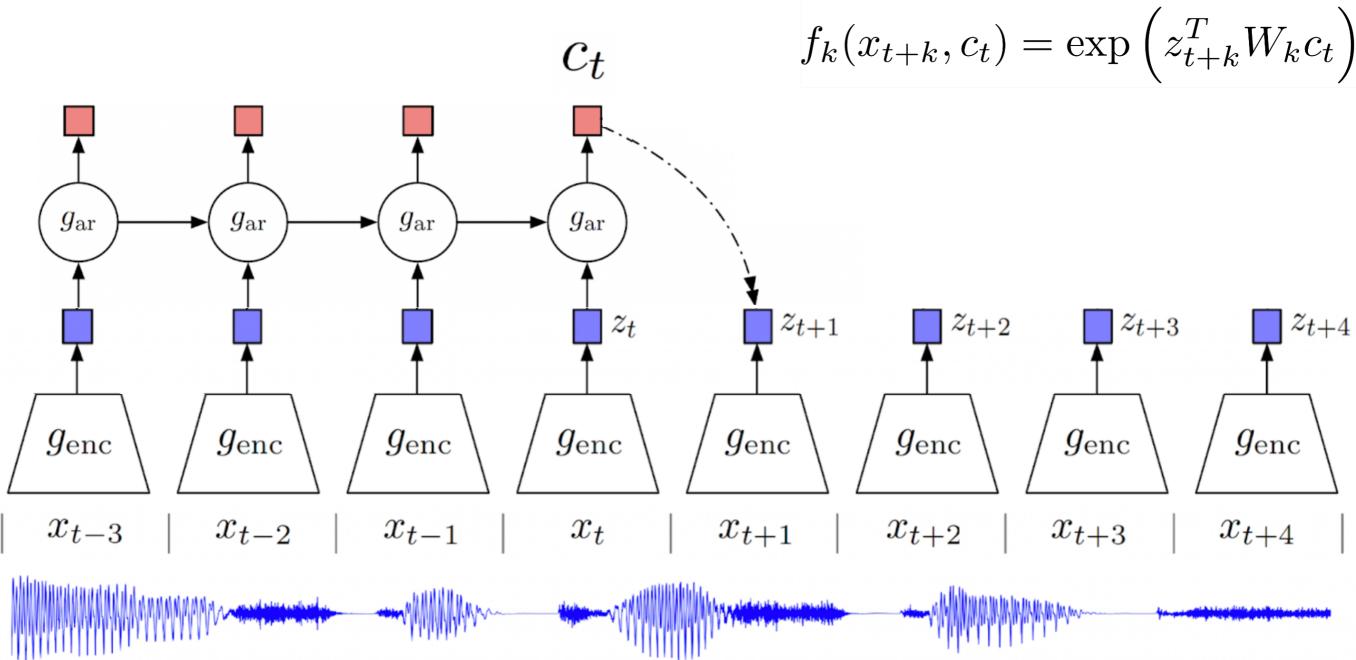


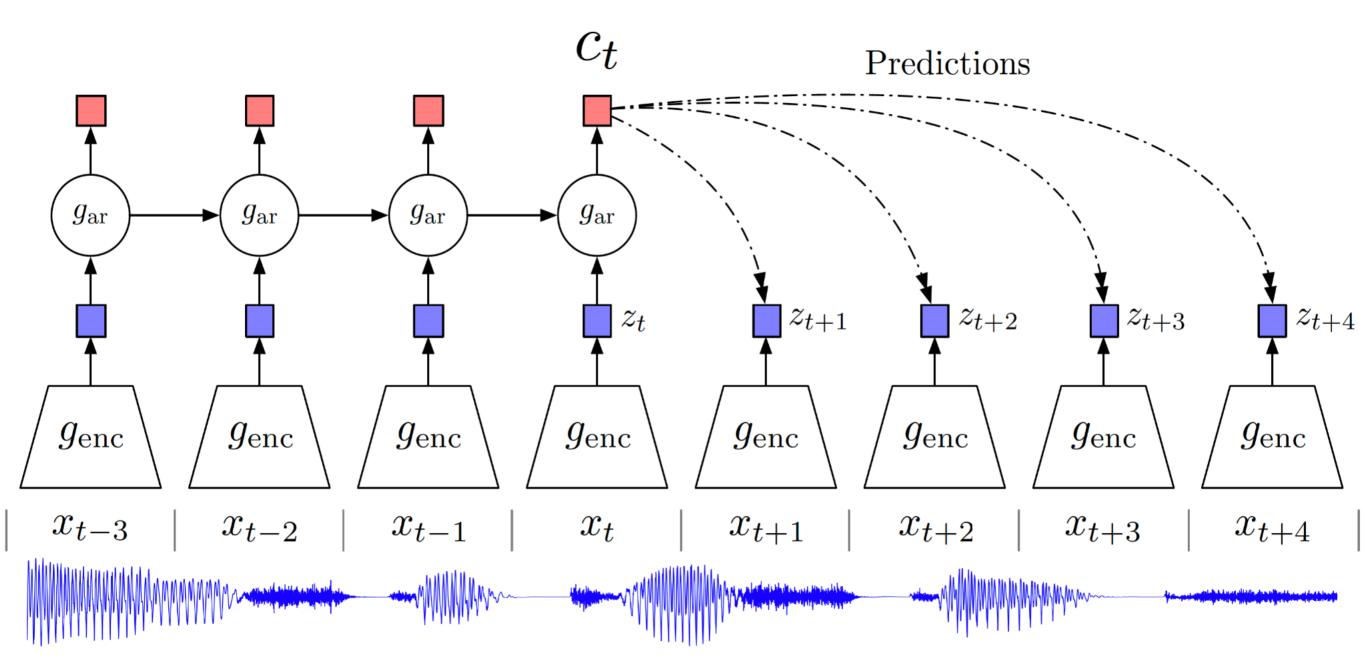


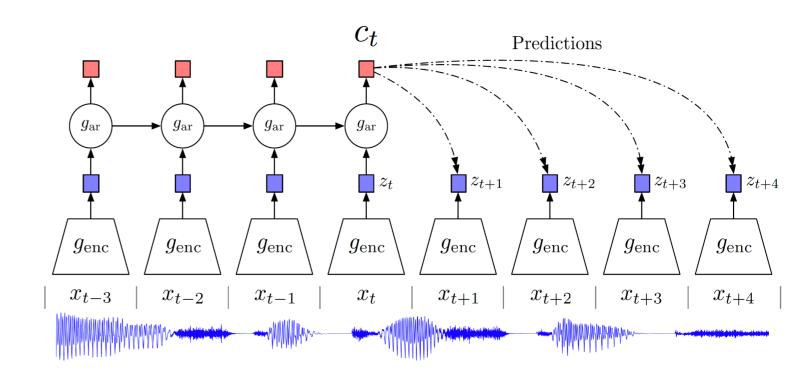
van den Oord et al, 2019 "Representation Learning with Contrastive Predictive Coding"



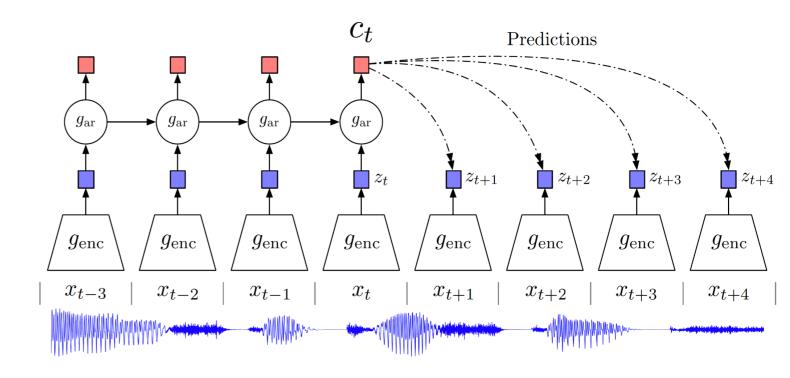






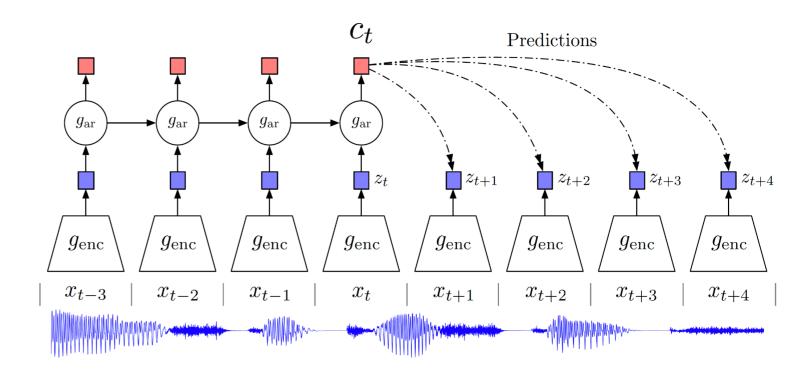


$$f_k(x_{t+k}, c_t) = \exp\left(z_{t+k}^T W_k c_t\right)$$



$$f_k(x_{t+k}, c_t) = \exp\left(z_{t+k}^T W_k c_t\right)$$

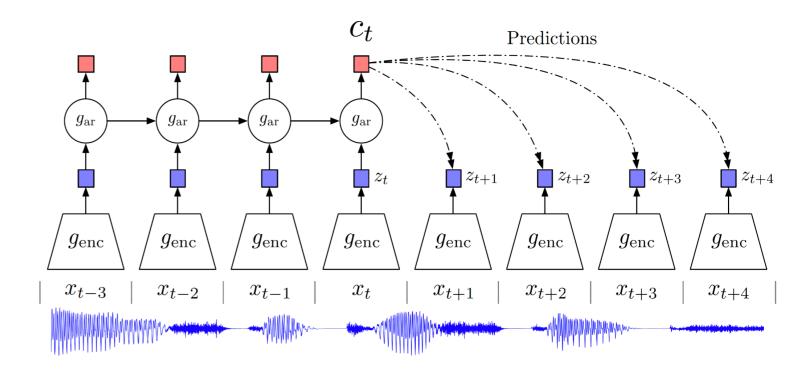
$$f_k(x_{t+k}, c_t) = \exp\left(z_{t+k}^T W_k c_t\right)$$
$$\mathcal{L}_{N} = -\mathbb{E}_{X} \left[\log \frac{f_k(x_{t+k}, c_t)}{\sum_{x_j \in X} f_k(x_j, c_t)}\right]$$



$$f_k(x_{t+k}, c_t) = \exp\left(z_{t+k}^T W_k c_t\right)$$

InfoNCE maximizes
 the mutual information
 between the input
 signal and the learned
 latent variables C.

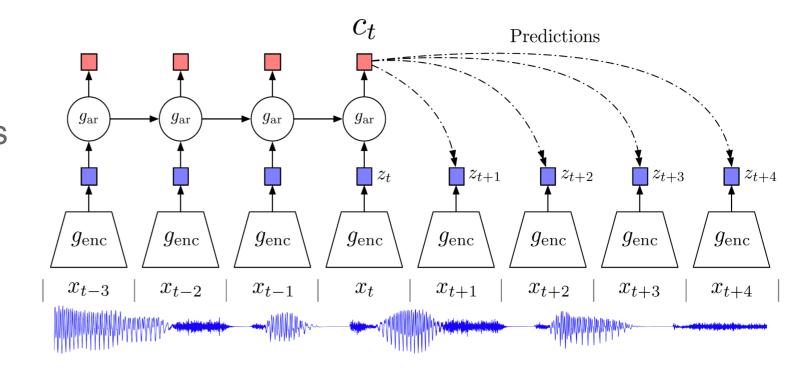
$$\mathcal{L}_{N} = -\mathbb{E}_{X} \left[\log \frac{f_{k}(x_{t+k}, c_{t})}{\sum_{x_{j} \in X} f_{k}(x_{j}, c_{t})} \right]$$



- InfoNCE maximizes the mutual information between the input signal and the learned latent variables C.
- Strategies for sampling negative and positive examples determine the nature of representations, e.g., whether they are good for ASR or Speaker ID.

$$f_k(x_{t+k}, c_t) = \exp\left(z_{t+k}^T W_k c_t\right)$$

$$\mathcal{L}_{N} = -\mathbb{E}_{X} \left[\log \frac{f_{k}(x_{t+k}, c_{t})}{\sum_{x_{j} \in X} f_{k}(x_{j}, c_{t})} \right]$$



The CPC approach inspired many follow up work

- The CPC approach inspired many follow up work:
 - With better architectures and normalization for stable training.

Schneider et. al., 2019 "wav2vec: Unsupervised Pre-training for Speech Recognition"

Kawakami et. al., 2020 "Learning Robust and Multilingual Speech Representations"

Rivi`ere et. al., 2020 "Unsupervised pretraining transfers well across languages"

- The CPC approach inspired many follow up work:
 - With better architectures and normalization for stable training.
 - Bidirectional autoregressive components.

Schneider et. al., 2019 "wav2vec: Unsupervised Pre-training for Speech Recognition"

Kawakami et. al., 2020 "Learning Robust and Multilingual Speech Representations"

Rivi`ere et. al., 2020 "Unsupervised pretraining transfers well across languages"

- The CPC approach inspired many follow up work:
 - With better architectures and normalization for stable training.
 - Bidirectional autoregressive components.
 - Which investigates the multilingual transfer of representations.
 -

Schneider et. al., 2019 "wav2vec: Unsupervised Pre-training for Speech Recognition"

Kawakami et. al., 2020 "Learning Robust and Multilingual Speech Representations"

Rivi`ere et. al., 2020 "Unsupervised pretraining transfers well across languages"

wav2vec 2.0

wav2vec 2.0: The pretext task

Baevski et al, 2020 "wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations"

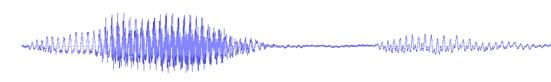
 The first approach to show significant improvements for low-resource ASR.

Baevski et al, 2020 "wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations"

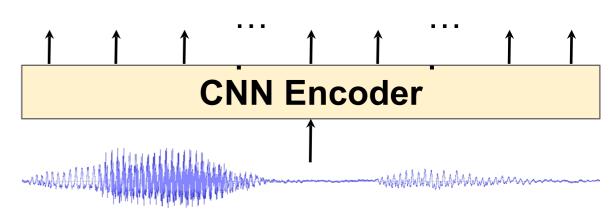
- The first approach to show significant improvements for low-resource ASR.
- Impressive results on multilingual representations.

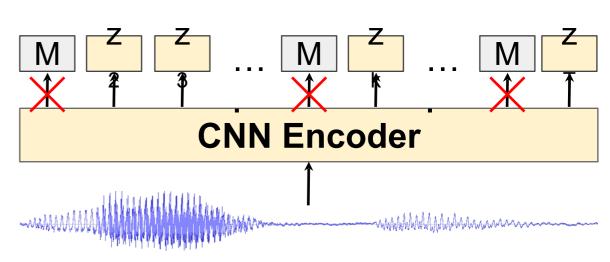
- The first approach to show significant improvements for low-resource ASR.
- Impressive results on multilingual representations.
- Strong performance on a wide range of downstream speech tasks.

wav2vec 2.0: The pretext task



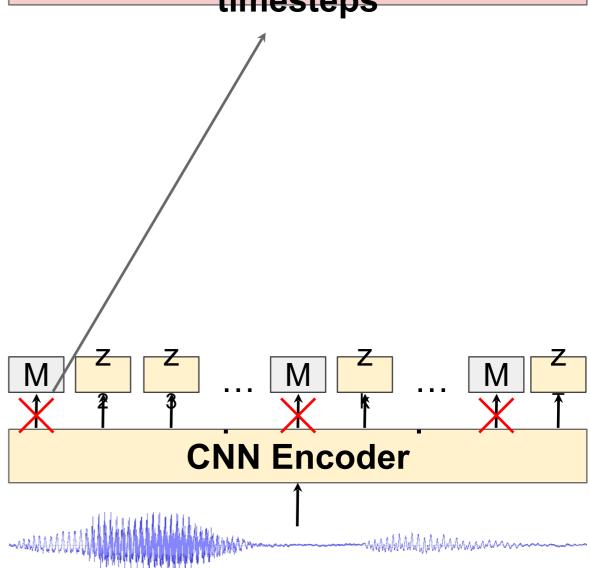
Baevski et al, 2020 "wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations"



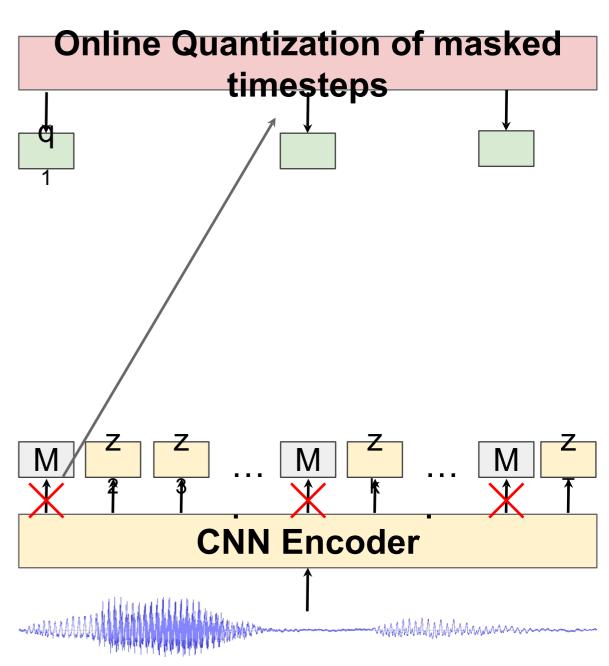


Baevski et al, 2020 "wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations"

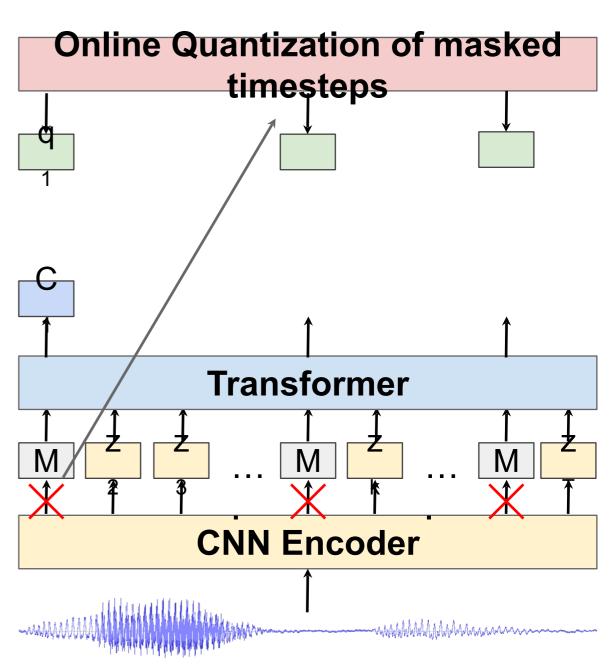
Online Quantization of masked timesteps



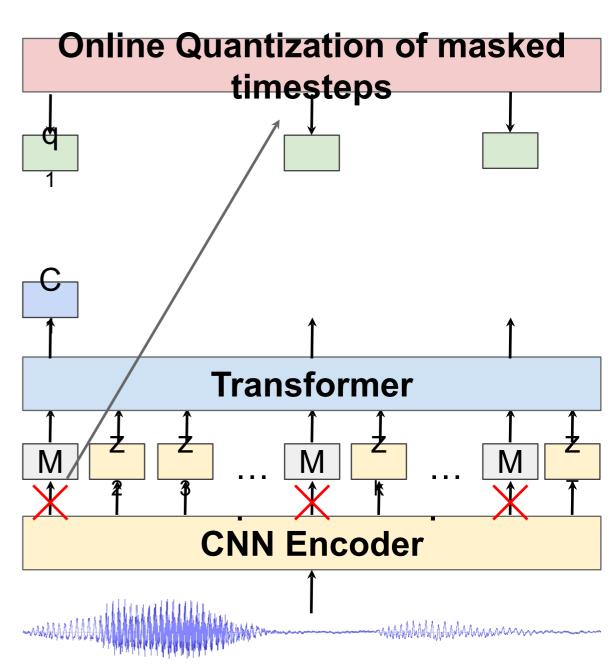
wav2vec 2.0: The pretext task



wav2vec 2.0: The pretext task

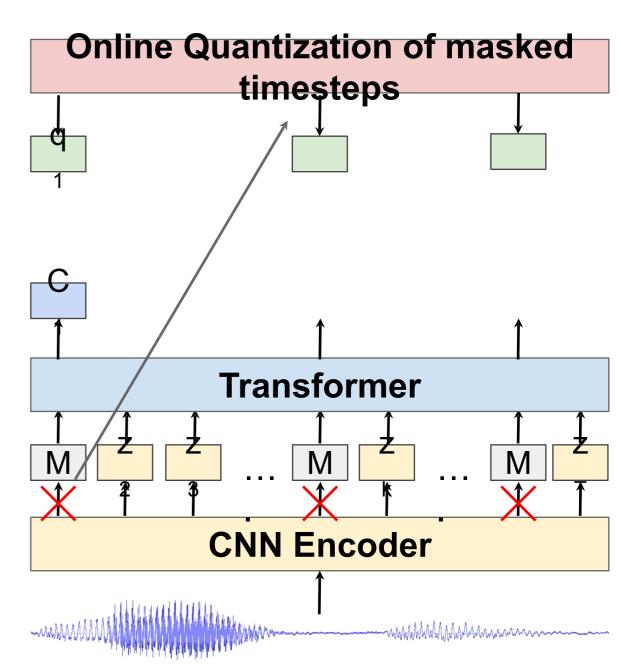


The goal is to maximize
 the similarity between the
 learned contextual
 representation and the
 quantized input features
 at the same position.



The goal is to maximize
 the similarity between the
 learned contextual
 representation and the
 quantized input features

$$\mathcal{L}_{m} = -\log \frac{\exp(sim(\mathbf{c}_{t}, \mathbf{q}_{t})/\kappa)}{\sum_{\tilde{\mathbf{q}} \sim \mathbf{Q}_{t}} \exp(sim(\mathbf{c}_{t}, \tilde{\mathbf{q}})/\kappa)}$$



 The model learns an online quantization of audio representations using a Gumbel softmax.

```
gumbels = (logits + gumbels) / tau # ~Gumbel(logits,tau)
y_soft = gumbels.softmax(dim)

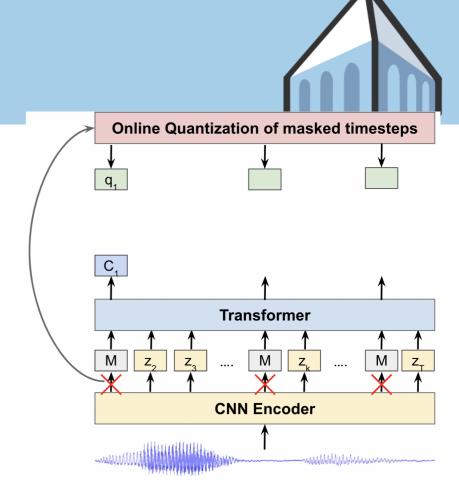
if hard:
    # Straight through.
    index = y_soft.max(dim, keepdim=True)[1]
    y_hard = torch.zeros_like(logits, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0)
    ret = y_hard - y_soft.detach() + y_soft

else:
    # Reparametrization trick.
    ret = y_soft

return ret
```

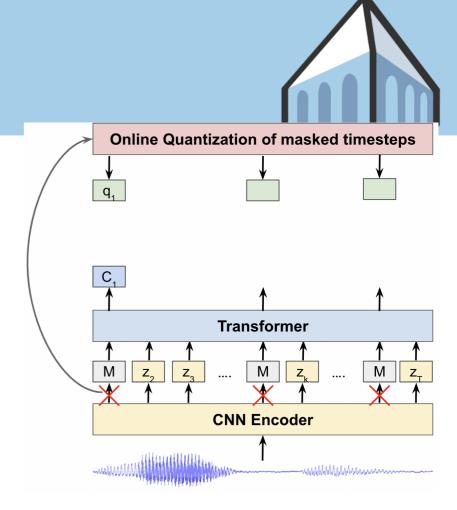
wav2vec 2.0: Implementation details

 Product quantization with more than one codebook yields better results.



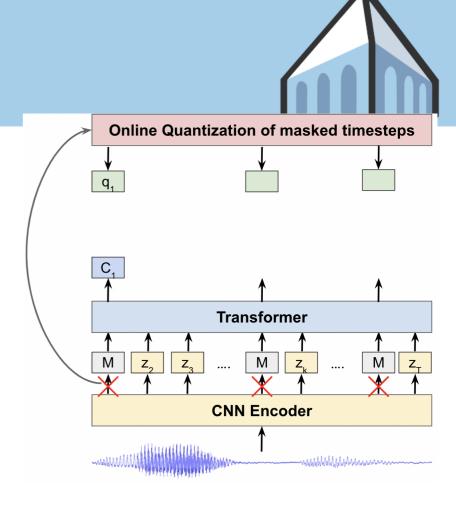
wav2vec 2.0: Implementation details

- Product quantization with more than one codebook yields better results.
- An entropy loss is added to the Gumbel softmax distribution to maximize codebook diversity.



wav2vec 2.0: Implementation details

- Product quantization with more than one codebook yields better results.
- An entropy loss is added to the Gumbel softmax distribution to maximize codebook diversity.
- Negative examples are chosen from masked segments in the same utterance that don't belong to the same codeword.



 The first approach to get into single-digit WER on Librispeech test-other using only 10 mins of labels.

The first approach to get into single-digit WER on Librispeech test-other using only 10 mins of labels.

Model	Unlabeled data	LM	clean	dev clean other		test clean other	
10 min labeled Discrete BERT [4]	LS-960	4-gram	15.7	24.1	16.3	25.2	
BASE	LS-960	4-gram Transf.	8.9 6.6	15.7 13.2	9.1 6.9	15.6 12.9	
LARGE	LS-960 LV-60k	Transf. Transf.	6.6 4.6	10.6 7.9	6.8 4.8	10.8 8.2	

 It is the first self-supervised approach to produce competitive results compared to semi-supervised learning approaches.

		_	-					
It is	Model	Unlabeled data	LM	dev clean other		test clean other		-
10 10	Supervised							_
con	CTC Transf [51]	_	CLM+Transf.	2.20	4.94	2.47	5.45	ırning
0011	S2S Transf. [51]	_	CLM+Transf.	2.10	4.79	2.33	5.17	21111119
app	Transf. Transducer [60]	-	Transf.	-	-	2.0	4.6	
арр	ContextNet [17]	-	LSTM	1.9	3.9	1.9	4.1	
	Conformer [15]	-	LSTM	2.1	4.3	1.9	3.9	
-	Semi-supervised							-
	CTC Transf. + PL [51]	LV-60k	CLM+Transf.	2.10	4.79	2.33	4.54	
	S2S Transf. + PL [51]	LV-60k	CLM+Transf.	2.00	3.65	2.09	4.11	
	Iter. pseudo-labeling [58]	LV-60k	4-gram+Transf.	1.85	3.26	2.10	4.01	
	Noisy student [42]	LV-60k	LSTM	1.6	3.4	1.7	3.4	
-	This work							_
	LARGE - from scratch	-	Transf.	1.7	4.3	2.1	4.6	
	BASE	LS-960	Transf.	1.8	4.7	2.1	4.8	
	Large	LS-960	Transf.	1.7	3.9	2.0	4.1	
		LV-60k	Transf.	1.6	3.0	1.8	3.3	

		_	=					_
It is	Model	Unlabeled data	LM	clean	ev other	clean	st other	-
	Supervised							-
con	CTC Transf [51]	-	CLM+Transf.	2.20	4.94	2.47	5.45	arning
	S2S Transf. [51]	-	CLM+Transf.	2.10	4.79	2.33	5.17	9
ann	Transf. Transducer [60]	-	Transf.	-	-	2.0	4.6	
αρρ	ContextNet [17]	-	LSTM	1.9	3.9	1.9	4.1	
	Conformer [15]	-	LSTM	2.1	4.3	1.9	3.9	
	Semi-supervised							_
	CTC Transf. + PL [51]	LV-60k	CLM+Transf.	2.10	4.79	2.33	4.54	
	S2S Transf. + PL [51]	LV-60k	CLM+Transf.	2.00	3.65	2.09	4.11	
	Iter. pseudo-labeling [58]	LV-60k	4-gram+Transf.	1.85	3.26	2.10	4.01	<u></u>
	Noisy student [42]	LV-60k	LSTM	1.6	3.4	1.7	3.4	
	This work							
	LARGE - from scratch	-	Transf.	1.7	4.3	2.1	4.6	
	BASE	LS-960	Transf.	1.8	4.7	2.1	4.8	
_	Large	LS-960	Transf.	1.7	3.9	2.0	4.1	_
		LV-60k	Transf.	1.6	3.0	1.8	3.3	

wav2vec 2.0 inspired many follow up work:

Conneau et. al., 2020 "Unsupervised Cross-lingual Representation Learning for Speech Recognition" Sadhu et. al., 2021 "Wav2vec-C: A Self-supervised Model for Speech Representation Learning" Chung et. al., 2021 "W2v-BERT: Combining Contrastive Learning and Masked Language Modeling for Self-Supervised Speech Pre-Training"

- wav2vec 2.0 inspired many follow up work:
 - Multilingual pretraining.

Conneau et. al., 2020 "Unsupervised Cross-lingual Representation Learning for Speech Recognition" Sadhu et. al., 2021 "Wav2vec-C: A Self-supervised Model for Speech Representation Learning" Chung et. al., 2021 "W2v-BERT: Combining Contrastive Learning and Masked Language Modeling for Self-Supervised Speech Pre-Training"

- wav2vec 2.0 inspired many follow up work:
 - Multilingual pretraining.
 - With more effective quantization.

Conneau et. al., 2020 "Unsupervised Cross-lingual Representation Learning for Speech Recognition" Sadhu et. al., 2021 "Wav2vec-C: A Self-supervised Model for Speech Representation Learning" Chung et. al., 2021 "W2v-BERT: Combining Contrastive Learning and Masked Language Modeling for Self-Supervised Speech Pre-Training"

- wav2vec 2.0 inspired many follow up work:
 - Multilingual pretraining.
 - With more effective quantization.
 - Combining contrastive and predictive losses.
 - ...

Conneau et. al., 2020 "Unsupervised Cross-lingual Representation Learning for Speech Recognition" Sadhu et. al., 2021 "Wav2vec-C: A Self-supervised Model for Speech Representation Learning" Chung et. al., 2021 "W2v-BERT: Combining Contrastive Learning and Masked Language Modeling for Self-Supervised Speech Pre-Training"

Speech representation learning methods

Contrastiv
e
approach
es

Predictive approach es

Generativ
e
approach
es

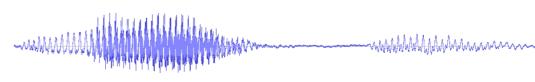
Hidden Unit BERT (HuBERT)

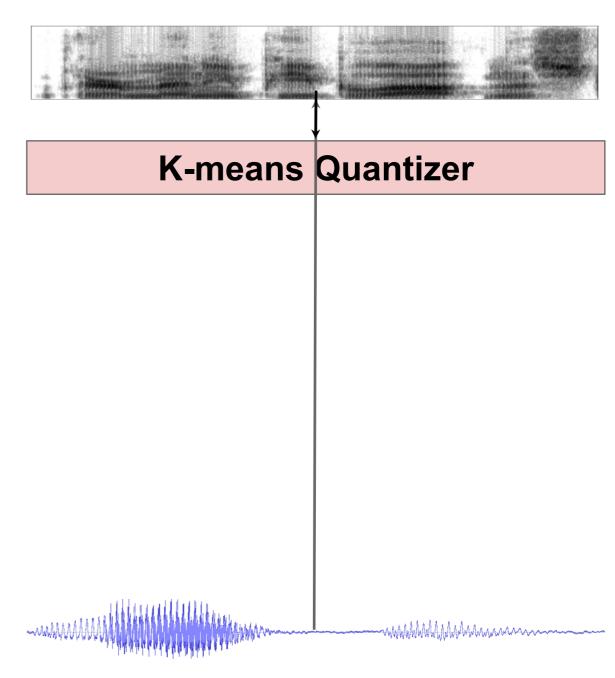
HuBERT

 A simple method to apply BERT style representation learning for speech.

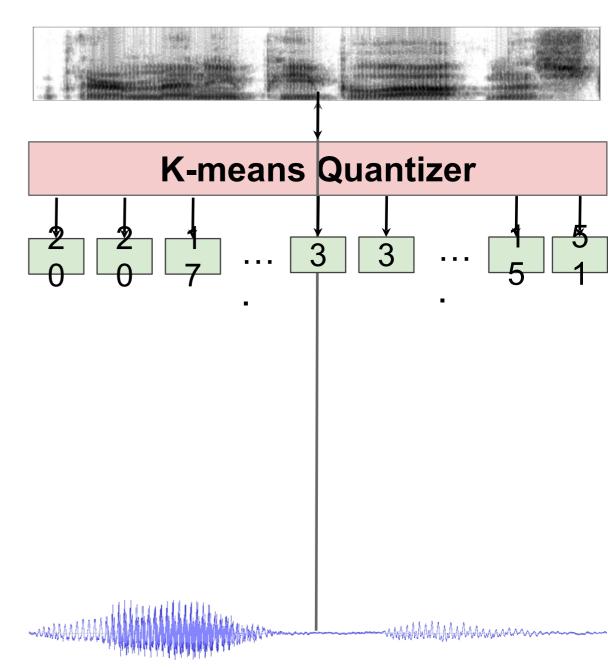
- A simple method to apply BERT style representation learning for speech.
- Matched or beat the SOTA on ASR while being the best for many speech tasks.

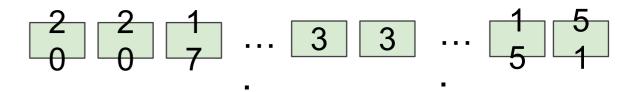
- A simple method to apply BERT style representation learning for speech.
- Matched or beat the SOTA on ASR while being the best for many speech tasks.
- With its high-quality discrete units, HuBERT facilitated
 Textless NLP research.

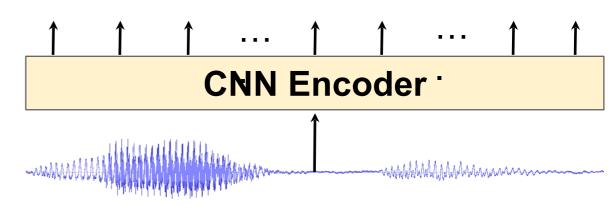


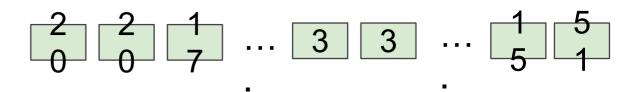


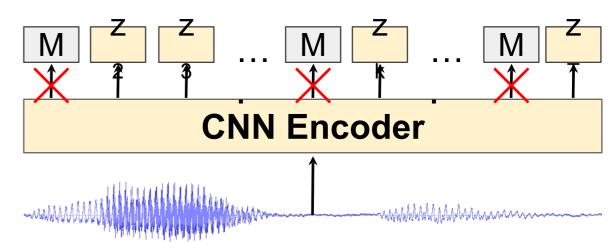
The K-means
 quantizer produces
 frame-level labels.

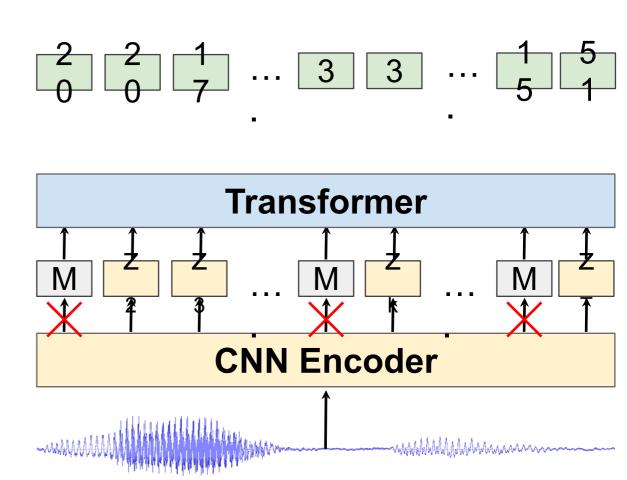




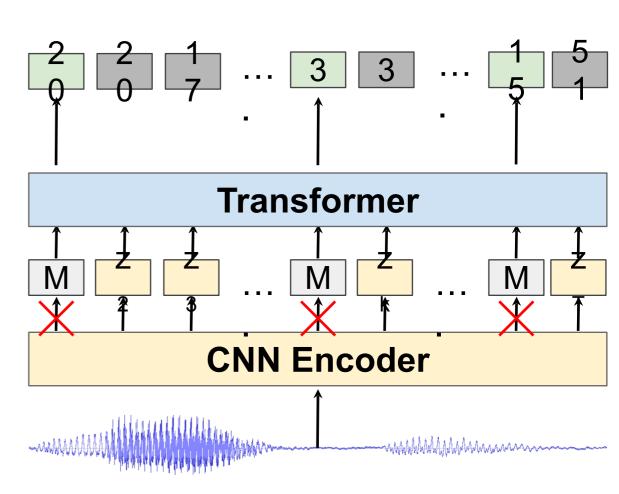




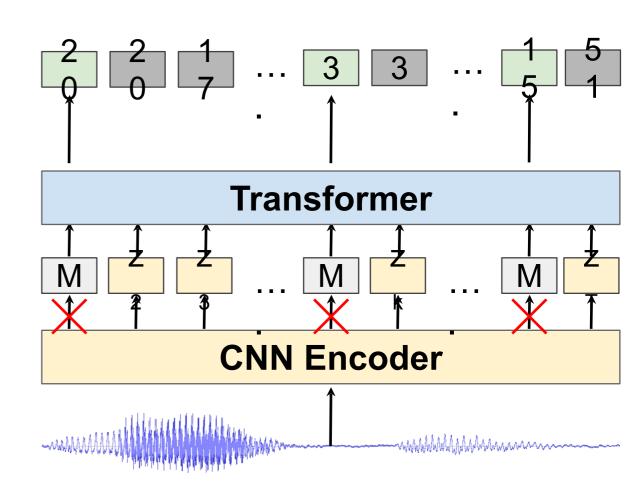




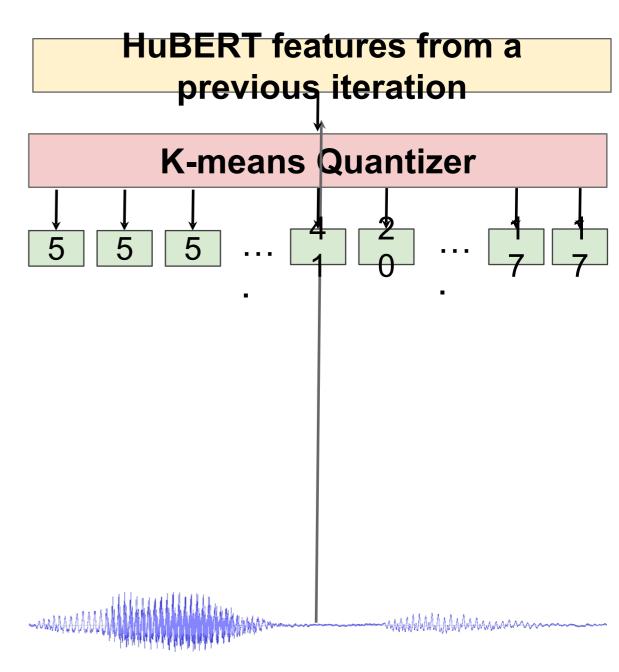
 Although the frame labels are imperfect, their consistency is more important!



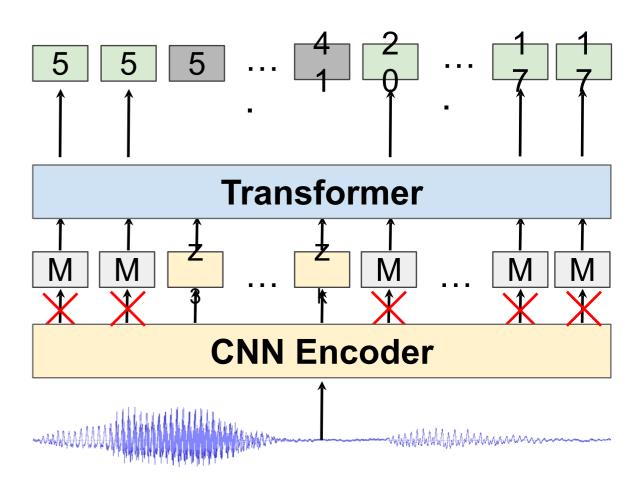
- Although the frame labels are imperfect, their consistency is more important!
- Tr $\mathcal{L}_m = \sum_{t \in M} -\log p(y_t \mid X)$ us prediction:



 Then the process can be repeated using learned HuBERT features from a previous iteration.

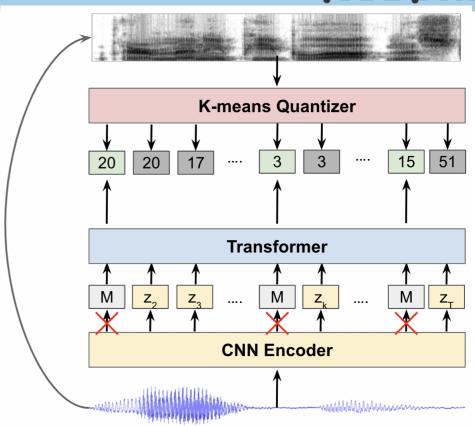


 Then the process can be repeated using learned HuBERT features from a previous iteration.



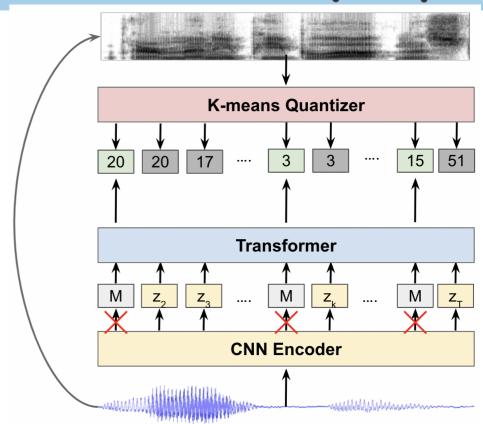
Hubert: Implementation details

 A small codebook size, e.g., 50, 100, is used for the initial training iteration to focus on phonetic differences rather than speaker and style.



Hubert: Implementation details

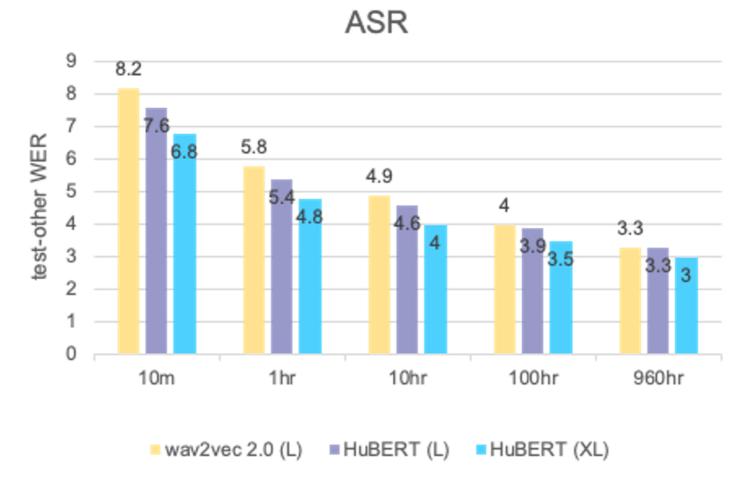
- A small codebook size, e.g., 50, 100, is used for the initial training iteration to focus on phonetic differences rather than speaker and style.
- For the subsequent two iterations, layers 6 and 9 of the base architecture (12 layers) are used for the clustering steps. They found empirically to contain higher quality features over many speech tasks.



HuBERT: Results

Matched or beat the SOTA on ASR.

Matched or beat the SOTA on ASR.



Hsu et al 2021, "HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units"

HuBERT: Results

- Matched or beat the SOTA on ASR.
- The best representations for multiple downstream tasks.

1110 000												
	PR	KS	IC	SID	ER	ASR	(WER)	QbE	5	SF	ASV	SD
	PER↓	Acc ↑	Acc ↑	Acc ↑	Acc ↑	w/o↓	w/ LM ↓	MTWV ↑	F1 ↑	CER↓	EER ↓	DER ↓
FBANK	82.01	8.63	9.10	8.5E-4	35.39	23.18	15.21	0.0058	69.64	52.94	9.56	10.05
PASE+ [16]	58.95	82.54	29.82	37.99	57.86	24.92	16.61	0.0072	62.14	60.17	11.61	8.68
APC [7]	42.21	91.01	74.69	60.42	59.33	21.61	15.09	0.0310	70.46	50.89	8.56	10.53
VQ-APC [32]	41.49	91.11	74.48	60.15	59.66	21.72	15.37	0.0251	68.53	52.91	8.72	10.45
NPC [33]	43.69	88.96	69.44	55.92	59.08	20.94	14.69	0.0246	72.79	48.44	9.4	9.34
Mockingjay [8]	70.84	83.67	34.33	32.29	50.28	23.72	15.94	6.6E-04	61.59	58.89	11.66	10.54
TERA [9]	49.17	89.48	57.90	57.57	56.27	18.45	12.44	0.0013	67.50	54.17	15.89	9.96
modified CPC [34]	42.54	91.88	64.09	39.63	60.96	20.02	13.57	0.0326	71.19	49.91	12.86	10.38
wav2vec [12]	32.24	95.59	84.92	56.56	59.79	16.40	11.30	0.0485	76.37	43.71	7.99	9.9
vq-wav2vec [13]	34.24	93.38	85.68	38.80	58.24	18.70	12.69	0.0410	77.68	41.54	10.38	9.93
wav2vec 2.0 Base [14]	5.56	96.23	92.35	75.18	63.43	9.57	6.32	0.0233	88.30	24.77	6.02	6.08
wav2vec 2.0 Large [14]	4.75	96.66	95.28	86.14	65.64	3.75	3.10	0.0489	86.94	27.80	5.65	5.62
HuBERT Base [35]	5.05	96.30	98.34	81.42	64.92	6.74	4.93	0.0736	88.53	25.20	5.11	5.88
HuBERT Large [35]	3.28	95.29	98.76	90.33	67.62	3.67	2.91	0.0353	89.81	21.76	5.98	5.75

Hubert: Extensions

HuBERT inspired many follow up work:

Chen et. al., 2021 "WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing"

Chiu et. al. 2022 "Self-supervised Learning with Random-projection Quantizer for Speech Recognition"

Shi et. al. 2022 "Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction"

Hubert: Extensions

- HuBERT inspired many follow up work:
 - Combined masked prediction and denoising pre-training.

Chen et. al., 2021 "WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing"

Chiu et. al. 2022 "Self-supervised Learning with Random-projection Quantizer for Speech Recognition"

Shi et. al. 2022 "Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction"

Hubert: Extensions

- HuBERT inspired many follow up work:
 - Combined masked prediction and denoising pre-training.
 - Random clustering is as effective in learning representations as k-means.

Chen et. al., 2021 "WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing"

Chiu et. al. 2022 "Self-supervised Learning with Random-projection Quantizer for Speech Recognition"

Shi et. al. 2022 "Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction"

- HuBERT inspired many follow up work:
 - Combined masked prediction and denoising pre-training.
 - Random clustering is as effective in learning representations as k-means.
 - Multimodal clustering for audio-visual ASR.

Chen et. al., 2021 "WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing"

Chiu et. al. 2022 "Self-supervised Learning with Random-projection Quantizer for Speech Recognition"

Shi et. al. 2022 "Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction"

- HuBERT inspired many follow up work:
 - Combined masked prediction and denoising pre-training.
 - Random clustering is as effective in learning representations as k-means.
 - Multimodal clustering for audio-visual ASR.
 - High-quality discrete units facilitated textless NLP research for speech generation.

•

Chen et. al., 2021 "WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing"

Chiu et. al. 2022 "Self-supervised Learning with Random-projection Quantizer for Speech Recognition"

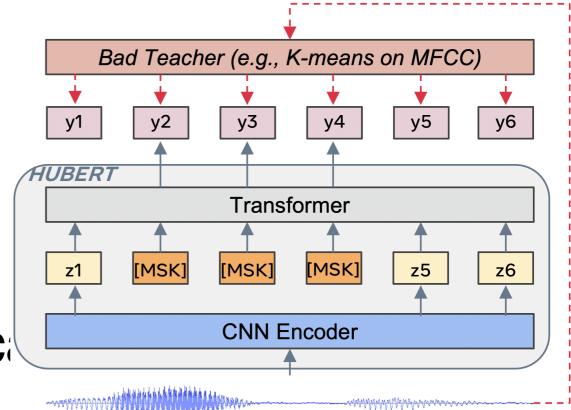
Shi et. al. 2022 "Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction"

HuBERT: Details:

- Small codebook sizes, e.g. 100, 500.
- The loss is only applied over masked regions.

$$L_m(\theta; X, M, Y) = \sum_{t \in M} \log p(y_t \mid \tilde{X}, t)$$

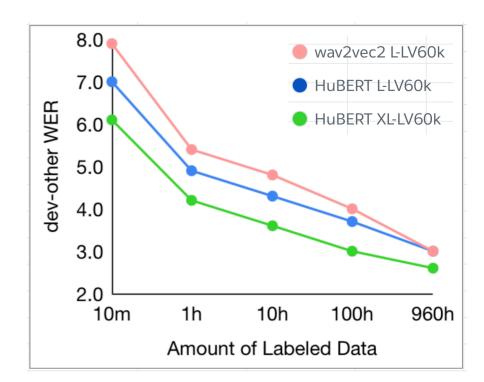
- The learned latent features controls
 be quantized for another learning iteration.
- GMMs or HMMs may replace kmeans for better initial labels.

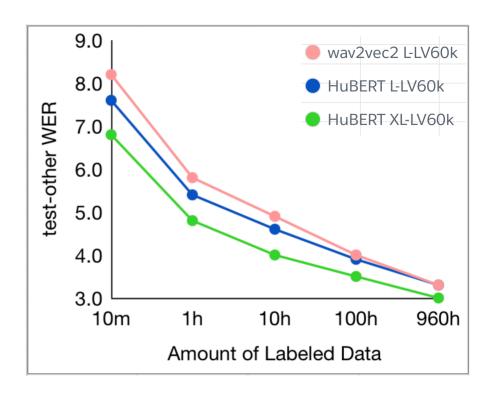


119

Results on Libri-light:

- Using at most three clustering steps, HuBERT is as effective or better than Wav2Vec 2.0
- Using a 1B model improves the performance across all sizes of labeled data for the challenging dev/test_other condition (up to 19% and13%).





Results on SUPERB – last layer

	PR	KS	IC	SID	ER	ASR (WER)		QbE	SF		SV	SD
	PER ↓	Acc ↑	Acc ↑	Acc ↑	Acc ↑	w/o↓	w/ LM ↓	MTWV ↑	F1 ↑	CER↓	EER ↓	DER ↓
FBANK	82.01	8.63	9.10	8.5E-4	35.39	23.18	15.21	0.0058	69.64	52.94	9.56	10.05
PASE+ [16]	58.88	82.37	30.29	35.84	57.64	24.92	16.61	7.0E-4	60.41	62.77	10.91	8.52
APC [7]	41.85	91.04	74.64	59.79	58.84	21.61	15.09	0.0268	71.26	50.76	8.81	10.72
VQ-APC [32]	42.86	90.52	70.52	49.57	58.31	21.72	15.37	0.0205	69.62	52.21	9.29	10.49
NPC [33]	52.67	88.54	64.04	50.77	59.55	20.94	14.69	0.0220	67.43	54.63	10.28	9.59
Mockingjay [8]	80.01	82.67	28.87	34.50	45.72	23.72	15.94	3.1E-10	60.83	61.15	23.22	11.24
TERA [9]	47.53	88.09	48.8	58.67	54.76	18.45	12.44	8.7E-5	63.28	57.91	16.49	9.54
modified CPC [34]	41.66	92.02	65.01	42.29	59.28	20.02	13.57	0.0061	74.18	46.66	9.67	11.00
wav2vec [12]	32.39	94.09	78.91	44.88	58.17	16.40	11.30	0.0307	77.52	41.75	9.83	10.79
vq-wav2vec [13]	53.49	92.28	59.4	39.04	55.89	18.70	12.69	0.0302	70.57	50.16	9.50	9.93
wav2vec 2.0 Base [14]	28.37	92.31	58.34	45.62	56.93	9.57	6.32	8.8E-4	79.94	37.81	9.69	7.48
HuBERT Base [35]	6.85	95.98	95.94	64.84	62.94	6.74	4.93	0.0759	86.24	28.52	7.22	6.76
HuBERT Large [35]	3.72	93.15	98.37	66.40	64.93	3.67	2.91	0.0360	88.68	23.05	7.70	6.23

Results on SUPERB – Weighted sum of layers

	PR	KS	IC	SID	ER	ASR (WER)		QbE	SF		ASV	SD
	PER ↓	Acc ↑	Acc ↑	Acc ↑	Acc ↑	w/o↓	w/ LM ↓	MTWV ↑	F1 ↑	CER↓	EER↓	DER ↓
FBANK	82.01	8.63	9.10	8.5E-4	35.39	23.18	15.21	0.0058	69.64	52.94	9.56	10.05
PASE+ [16]	58.95	82.54	29.82	37.99	57.86	24.92	16.61	0.0072	62.14	60.17	11.61	8.68
APC [7]	42.21	91.01	74.69	60.42	59.33	21.61	15.09	0.0310	70.46	50.89	8.56	10.53
VQ-APC [32]	41.49	91.11	74.48	60.15	59.66	21.72	15.37	0.0251	68.53	52.91	8.72	10.45
NPC [33]	43.69	88.96	69.44	55.92	59.08	20.94	14.69	0.0246	72.79	48.44	9.4	9.34
Mockingjay [8]	70.84	83.67	34.33	32.29	50.28	23.72	15.94	6.6E-04	61.59	58.89	11.66	10.54
TERA [9]	49.17	89.48	57.90	57.57	56.27	18.45	12.44	0.0013	67.50	54.17	15.89	9.96
modified CPC [34]	42.54	91.88	64.09	39.63	60.96	20.02	13.57	0.0326	71.19	49.91	12.86	10.38
wav2vec [12]	32.24	95.59	84.92	56.56	59.79	16.40	11.30	0.0485	76.37	43.71	7.99	9.9
vq-wav2vec [13]	34.24	93.38	85.68	38.80	58.24	18.70	12.69	0.0410	77.68	41.54	10.38	9.93
wav2vec 2.0 Base [14]	5.56	96.23	92.35	75.18	63.43	9.57	6.32	0.0233	88.30	24.77	6.02	6.08
wav2vec 2.0 Large [14]	4.75	96.66	95.28	86.14	65.64	3.75	3.10	0.0489	86.94	27.80	5.65	5.62
HuBERT Base [35]	5.05	96.30	98.34	81.42	64.92	6.74	4.93	0.0736	88.53	25.20	5.11	5.88
HuBERT Large [35]	3.28	95.29	98.76	90.33	67.62	3.67	2.91	0.0353	89.81	21.76	5.98	5.75