
Classical and Modern 
formulations of ASR

EECS 183/283a: Natural Language Processing



Speech recognition

“I want to go to  
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End-to-end speech recognition
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Neural networkFeature 
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How to obtain the posterior 

• We just replace it with a neural network-based function 

• Easy and simple, no math (in this level), however

•  is a sequence! 
• Very difficult to deal with it 
• Say  we have to deal with  possible sequences 
• Also, the length  is variable  
• We have to use a special neural network (e.g., attention, CTC, and RNN-

transducer)

𝑓nn( ⋅ )

𝑊

𝑁 = 10,  𝒱 = 100, 10010

𝑁



• Classical speech recognition  
• Pipeline
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Classical (non-end-to-end) speech 
recognition

Feature 
extraction

“I want to go to  
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modeling

𝑂 𝑊



Speech  Text

Speech : 

Text : I want to go to the campus

𝑂

𝑊
8

ASR



Speech  Phoneme  Text

Speech : 

Phoneme : AY W AA N T T UW G OW T UW K AE M P AH S 

Text : I want to go to campus

𝑂

𝐿

 𝑊
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How to obtain the posterior 

• Factorize the model with phoneme 
• Let                                                                                       be a 

phoneme sequence 

Note: the right hand side is not the probability as it lacks a sum to one constraint

Sum rule

Bayes+ Product rule

Ignore  as it 
does not depend 
on 

𝑝(𝑂)

𝑊

Conditional 
independence 
assumption



• Speech recognition 
•  :	 	 Acoustic model (Hidden Markov model) 
•  :	 	 Lexicon 
•  :	 	 Language model (n-gram)

argmax
W

𝑝(𝑊 |𝑂) = argmax
𝑊

𝑝(𝑂 𝑊 )𝑝(𝑊 ) ≈ argmax
𝑊 ∑

𝐿

𝑝(𝑂 𝐿)𝑝(𝐿 |𝑊 )𝑝(𝑊 ) 

𝑝(𝑂 𝐿)

𝑝(𝐿 𝑊 )

𝑝(𝑊 )

Noisy channel model



• Machine translation 
•  :	 Translation model 
•  :	 	 Language model

argmax
W

𝑝(𝑊 |𝑌 ) = argmax
W

𝑝(𝑌 𝑊 )𝑝(𝑊 )

𝑝(𝑌 𝑊 )

𝑝(𝑊 )

Noisy channel model

W: Target 
language text 
Y: Source language 
text 



Speech recognition pipeline

Feature 
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Speech recognition pipeline

Feature 
extraction
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“goes to”
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Please remember the noisy channel model

• Factorization 

• Conditional independence (Markov) assumptions 

We can elegantly factorize the speech recognition 
problem with a tractable subproblem



Main blocks of Classical ASR

Feature 
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Speech recognition pipeline

Feature 
extraction

“I want to go to  
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Waveform to speech feature

• Performed by so-called feature extraction module 
• Mel-frequency cepstral coefficient (MFCC), Perceptual Linear 

Prediction (PLP) used for Gaussian mixture model (GMM) 
• Log Mel filterbank used for deep neural network (DNN) 

• Time scale 
• 0.0625 milliseconds (16kHz) to 10 milliseconds 

• Type of values 
• Scalar (or discrete) to 12—40 dimensional vector 

Feature 
extraction



Speech recognition pipeline

Feature 
extraction

“I want to go to  
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Speech feature to phoneme

• Performed by so-called acoustic modeling module 
• Hidden Markov model (HMM) with GMM as an emission probability function 
• Hidden Markov model (HMM) with DNN as an emission probability function 

• Time scale 
• 10 milliseconds to ~100 milliseconds (depending on a phoneme) 

• Type of values 
• 12-dimensional continuous vector to 50 categorical value (~6bit) 

• The most critical component to get the ASR performance 
• It can be a probability of possible phoneme sequences, e.g., 

	        or                           with some scores

Acoustic 
modeling

G OW T UW

G OW T UW G OW Z T UW



Acoustic model 𝑝(𝑂 |𝐿)

• O and L are different lengths 
• Align speech features and 

phoneme sequences by using 
HMM 

• Provide  based on this 
alignment and model 
• The most important problem in 

speech recognition

𝑝(𝑂 𝐿)

UW1                        UW2                                  UW3

UW1                        UW2                                  UW3

or
/UW1/ /UW2/ /UW3/



How to formulate an acoustic model

• Acoustic model: 
• Again, O and L are different lengths 

• If we assume that the alignment 
information is given, the problem 
becomes easy

/T/ /UW/

/T/ /UW/

Hard alignment 
problem similar to 
CTC and RNN-T



Speech recognition pipeline
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Phoneme to word

• Performed by lexicon module 
• American English: CMU dictionary 

• Time scale 
• 100 milliseconds (depending on a phoneme) to 1 second (depending on a 

word and also language) 

• Type of values 
• 50 categorical value (~6bit) to 100K categorical value (~2Byte) 

• We need a pronunciation dictionary 

• It can be multiple word sequences (one to many)

LexiconG OW T UW “go to”



Lexicon 𝑝(𝐿 |𝑊 )

• Basically use a pronunciation dictionary, and map a 
word to the corresponding phoneme sequence 
•  with the probability = 1.0 when single pronunciation 
•  with the probability = 1.0/J when multiple (J) 

pronunciations 



Speech recognition pipeline
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Word to text

• Performed by language modeling module 
• N-gram 
• Neural language model (recurrent neural network or transformer) 

• From training data, we can basically find how possibly ”to”, 
“two”, and “too” will be appeared after “go” 
• Part of WSJ training data, 37,416 utterances 
• “go to”: 51 times 
• “go two”: 
• “go too”:

𝑝(𝑊 )

Language 
modeling

“go to”
“go to”
“go two”
“go too”



Word to text

• Performed by language modeling module 
• N-gram 
• Neural language model (recurrent neural network or transformer) 

• From training data, we can basically find how possibly ”to”, 
“two”, and “too” will be appeared after “go” 
• Part of WSJ training data, 37,416 utterances 
• “go to”: 51 times 
• “go two”: 0 times 
• “go too”: 0 times

𝑝(𝑊 )

Language 
modeling

“go to”
“go to”
“go two”
“go too”



Word to text

• Performed by language modeling module 
• N-gram 
• Neural language model (recurrent neural network or transformer) 

• From training data, we can basically find how possibly ”to”, 
“two”, and “too” will be appeared after “go” 
• WSJ all text data, 6,375,622 sentences 
• “go to”: 2710 times 
• “go two”:  
• “go too”: 

𝑝(𝑊 )

Language 
modeling

“go to”
“go to”
“go two”
“go too”



Word to text

• Performed by language modeling module 
• N-gram 
• Neural language model (recurrent neural network or transformer) 

• From training data, we can basically find how possibly ”to”, “two”, 
and “too” will be appeared after “go” 
• WSJ all text data, 6,375,622 sentences 

• “go to”: 2710 times 
• “go two”: 2 times, e.g., “those serving shore plants often go two hundred miles or 

more” 
• “go too”: 

𝑝(𝑊 )

Language 
modeling

“go to”
“go 
two”
“go 
too”

“go to”



Building speech recognition was really 
difficult…

• We need to develop all components 

• Each component requires a lot of background knowledge 

• We need to tune hyper-parameters in each module

Feature 
extraction

“I want to go to  
campus”

Acoustic 
modeling Lexicon Language 

modeling

G OW T UW

“go to”
“go two”
“go too”
“goes to”
“goes two”
“goes too”

G OW Z T UW



Next: End-to-end speech recognition

“I want to go to  
campus”

Neural network

• We can simply the complicated models 
• Optimize all components by using back propagation 
• We still need some formulations to make a problem tractable

Feature 
extraction



Today’s agenda

• Output 

• Alignments



Output unit

• Our final goal: output a text 

• Text can be represented by several forms 
• Word, Character, phoneme, etc. 
• We will discuss the characteristics of each output unit

Feature 
extraction

“I want to go to
CMU campus”

Acoustic 
modeling Lexicon Language 

modeling

G OW T UW

“go to”
“go two”
“go too”
“goes to”
“goes two”
“goes too”

G OW Z T UW



Which unit? 
End-to-End ASR case

How to describe the phrase “go to”? 
• Word 

• “go” and “to” 
• More semantic/syntactic 
• Very large vocabulary size, e.g.,  would be 100K 
• Out of vocabulary issue ☹ 
• The length ( ) is very short. Less computational cost, but 

larger mismatch between the input and output lengths 
• Character 

• “g” “o” “_“ “t” and “o” (“_” means the space) 
• The vocabulary size is not large in general. ~30 in the Roman 

script, ~10K in the Chinese script 
• No out of vocabulary issue (rarely happens) ☺ 
• The length ( ) becomes longer. More computational cost, 

but relaxing the mismatch between the input and output lengths 
• BPE: Byte Pair Encoding (sentence piece) 

• “go to”  “▁g” “o” “_to” ( ) 
• Something between, we can also control the vocabulary size 

In general, we do not specify which unit we use in our lecture since this 
is one of the model configurations.

|𝒱 |

𝑁 = 2

𝑁 = 5

𝑁 = 3



Which unit? 
HMM-based (classical) system

How to describe the phrase “go to”? 

• Phoneme 
• “go to”  “G OW T UW” 
• More acoustic 
• The phoneme vocabulary size is not very large in general 
• The length ( ) becomes long (like the discussion in the (Roman) character). 
• We need a dictionary 
• If we use a phone, we can make this part language-independent 

• State (hidden Markov model state) 
• We further decompose a phoneme into several states 
• Furthermore acoustic 
• Classically, we use this representation a lot (e.g., 3-state HMM) 

• It makes the unit further longer and the mismatch between the input and output lengths is further relaxed 
• It will be introduced later in HMM

𝑁 = 5



Which unit practically?

• Mostly, we use BPE (or sentence piece) 
• We need to set the maximum number depending on the training 

data 

• Character for the low-resource case or Chinese and Japanese 
• Chinese/Japanese has ~10,000 characters 

• Some languages do not have scripts 
• Phoneme, phone 
• Translation to the other languages (not ASR but speech translation)



Today’s agenda
• Output 

• Alignments 



HMM-based (classical) speech recognition 
pipeline

Feature 
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𝑝(𝑂 |𝐿) 𝑝(𝐿 |𝑊 ) 𝑝(𝑊 )



Speech recognition

“I want to go to  
campus”

Speech recognitionFeature 
extraction

𝑂 𝑊



End-to-End ASR

• Direct mapping function from speech feature sequence  
to text 
• Usually, it does not deal with the phoneme-based 

intermediate representation  

• Mainly three architectures 
• Attention-based 
• Decoder-only is also included here (not fully end-to-end) 

• Connectionist temporal classification (CTC) 
• Recurrent neural network transducer (RNN-T)

𝑂

𝑊



HMM-based 
(Classical) CTC

RNN-
transducer

Attention-
based



HMM-based 
(Classical) CTC

RNN-
transducer

Attention-
based

Non End-to-End End-to-End



Attention-based ASR

Listen Attend & Spell (2016)



Attention-based ASR

• Our staring point  
• Input:  
• It is difficult to deal with 
•  

• Instead, we factorize  as follows based on a probabilistic chain 
rule 

• This neural network is handled by an attention-based method to 
align the input and output (soft alignments) 
• We usually do not use the phoneme 

𝑝(𝑊 |𝑂)

𝑂 = (𝐨𝑡 | 𝑡 = 1,…, 𝑇 )

𝑊 = (𝑤𝑖 ∈ 𝒱 𝑖 = 1,…, 𝑁)
𝑻 ≠ 𝑵

𝑝(𝑊 |𝑂)



Attention-based ASR

• Our staring point  
• Input:  
• It is difficult to deal with 
•  

• Instead, we factorize  as follows based on a probabilistic chain rule 

• This neural network is handled by an attention-based method to align the 
input and output (soft alignments) 
• We usually do not use the phoneme 

𝑝(𝑊 |𝑂)

𝑂 = (𝐨𝑡 | 𝑡 = 1,…, 𝑇 )

𝑊 = (𝑤𝑖 ∈ 𝒱 𝑖 = 1,…, 𝑁)
𝑻 ≠ 𝑵

𝑝(𝑊 |𝑂)



Whisper (OpenAI)



Alignments

Speech features 
35) 𝑂 ( 𝑂 =

Token 
𝑊 ( 𝑊 = 3)



Soft alignments

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

How many %  
“s” is aligned?



Soft alignments

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

How many %  
“e” is aligned?



Soft alignments

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Attention-based approach 
is based on the soft 
alignment

𝐴𝑗 = (𝑎𝑗𝑡 ∈ [0,1] 𝑡 = 1,…, 𝑇)
𝑎𝑗𝑡 ≥ 0, ∑

𝑡

𝑎𝑗𝑡 = 1How many %  
“e” is aligned?



Connectionist Temporal Classification



RNN-Transducer



CTC or RNN transducer cases

• Again, our staring point 
• We introduce a hard alignment path 

as a random variable: 

• We consider the following equations

𝑝(𝑊 |𝑂)

𝑍 = (𝑧𝑡 ∈ 𝒱′￼| 𝑡 = 1,…, 𝑇 )



Alignments

Speech features 
35) 𝑂 ( 𝑂 =

Token 
𝑊 ( 𝑊 = 3)



Hard Alignments

56



Hard Alignments

How to represent this 
information 
mathematically?



Alignment variable

• “s”, “s”, .., “e”, “e”, 𝑧1 = 𝑧2 = 𝑧5 = 𝑧6 =

One 
possible 
realization 
of 
alignments



Alignment variable

• “s”, “s”, .., “e”, “e”, 𝑧1 = 𝑧2 = 𝑧7 = 𝑧8 =

The other 
possibility



Hard alignments

60
“s”, “s”, .., “e”, …, “e” 𝑧1 = 𝑧2 = 𝑧5 = 𝑧𝑇 =

𝑍 = (𝑧𝑡 ∈ {“𝑠”,  “𝑒”,  …} | 𝑡 = 1,…, 𝑇 )

We can represent a path  
as a sequence variable 
This is called a hard alignment

HMM, CTC, and RNN-
Transducer are based on 
the hard alignment



CTC case

• Again, our staring point  

• We introduce a hard alignment path as a random variable:  

• We consider a set of all possible alignment paths representing . We call this set as  

• We incorporate this random variable to  as follows:  

•  is a sequence and it is difficult to deal with. Similar to the attention case, we use a chain rule to 
further factorize this equation:

• This is not very difficult compared with an attention-based method, since  and  are 
based on the same length  

• RNN transducer can also be formulated in a similar manner

𝑝(𝑊 |𝑂)

𝑍 = (𝑧𝑡 ∈ 𝒱′￼| 𝑡 = 1,…, 𝑇 )

𝑊 𝒵(𝑊 )

𝑝(𝑊 |𝑂)

𝑍

𝒁 𝑶
𝑻



Difference between E2E and HMM-based

•  (end-to-end) 

•  (HMM based) 

• In and , there are two differences

𝑝(𝑊 𝑂)

𝑝(𝑂 |𝐿)

𝑝(𝑊 𝑂)  𝑝(𝑂 𝐿)



Simple case

• We know that phoneme /T/ is 
aligned with , and phoneme /
UW/ is aligned with 

𝑂1:5

𝑂6:18
/T/ /UW/

This factorization is very natural if they are aligned



Simple case

• We know that phoneme /T/ is 
aligned with , and phoneme /
UW/ is aligned with 

𝑂1:5

𝑂6:18
/T/ /UW/

Conditional independence assumptions
• Note that the conditional independence 

assumptions are “approximation or 
modeling” 

• Not based on the derivation.



General case

• Factorize for each phoneme: 

• Final factorization

• If we know the alignment 
information, we can factorize the 
acoustic model probability for 
each phoneme 

• We use conditional 
independence assumptions very 
aggressively



General case

• Factorize for each phoneme: 

• Final factorization

• If we know the alignment 
information, we can factorize the 
acoustic model probability for 
each phoneme 

• We use conditional 
independence assumptions very 
aggressively

Product rule 
(chain rule)

Conditional independence 
assumption



Word -> Phoneme -> State

• We need a more precise unit to present  
   an acoustic dynamics

/SILB/ /T/ /UW/ /SILE/

SILB1 SILB2 SILB3 T1 T2 T3 UW1 UW2 UW3 SILE1 SILE2 SILE3 

“two”

Introduce phoneme representation

Introduce further  
precise representation 
(we call it state)



How to align states to features?

• Alignment problem

SILB1 SILB2 SILB3T1 T2 T3 SILE1     SILE2                 SILE3 UW1                        UW2                                  UW3



We don’t know the alignment 
information…

UW1                        UW2                                  UW3

UW1                        UW2                                  UW3 ????

or



We don’t know the alignment 
information…

UW1                        UW2                                  UW3

UW1                        UW2                                  UW3

/UW1/ /UW2/ /UW3/

We use  
HMM!We will use the similar 

formulation (introducing 
alignment variable ) to 
CTC/RNN-T

𝒁



Interim Summary

• The most difficult issue in speech recognition: the input and 
output lengths are different 
• We need some alignments 

• The soft alignment case 
• We use an attention-based neural network  (this will be introduced 

later). 

• The hard alignment cases 
• We explicitly introduce an alignment path . 
• We can use it for CTC, RNN-transducer, and HMM-based approach

𝑍



HMM-based 
(Classical) CTC

RNN-
transducer

Attention-
based



HMM-based 
(Classical) CTC

RNN-
transducer

Attention-
based

Non End-to-End End-to-End



HMM-based 
(Classical) CTC

RNN-
transducer

Attention-
based

Hard alignment

Soft alignment



Monotonic vs. non-monotonic

• Machine translation case (non monotonic) 

• Speech recognition case (monotonic)



Agenda

• Alignment paths 
• CTC 
• RNN-Transducer 
• HMM (3-state left-to-right)



Speech recognition pipeline

Feature 
extraction

“I want to go to  
the CMU campus”

CTC

77

𝑝(𝑂 |𝑊 )



Hard alignments for  
repeated tokens

• Hard alignment examples 

• How to distinguish them? 
• (“s”, “e”, “e”) 
    vs. 
• (“s”, “e”) 
• Both are written as  
•

• We introduce the blank symbol! 
•

𝑍 = (𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒…)

𝑍 = (𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 < 𝑏 >  𝑒𝑒𝑒…)



Hard alignments for  
repeated tokens

• Hard alignment examples 

• How to distinguish them? 
• (“s”, “e”, “e”) 
    vs. 
• (“s”, “e”) 
• Both are written as  
•

• We introduce the blank symbol! 
•

𝑍 = (𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒…)

𝑍 = (𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 < 𝑏 >  𝑒𝑒𝑒…)



Introduction of blank symbol <b>

• First, we insert <b> to the character sequence ”see” 

  → “s”, “e”, “e” , where  

• Then, expand  to the frame length  to form  
• Assuming that  in general: We cannot use CTC if it is not satisfied 
• All tokens and <b> can be repeated to adjust the length  

• For example, if “e” is repeated three times 
• “e”  ”e”, “e”, “e”)
• “e”  “e”, “e”, “<b>”)
• “e”  “e”, “<b>”, “<b>”)

• <b> must be inserted between repeated character 
• “e”, “e”), then “e”, ”<b>”, ”e”…): we cannot skip <b>
• “s”, “e”), then, “s”, “e”…): we can skip <b>

𝑊 = ( ) 𝑊 = 𝐽

𝑾 ′￼ 𝑻 𝑍

𝑇 > 𝐽

𝑊 = 𝑍 = (

𝑊 = 𝑍 = (

𝑊 = 𝑍 = (

𝑊 = ( 𝑍 = (…

𝑊 = ( 𝑍 = (…

80



Example of 𝑍

• “s”, “e”, “e”
Then 

 or

 “s”, “<b>”, “e”, “<b>”, “e” , or 

“s”, “s”, “e”, “<b>”, “e” , or
….   
This is an alignment problem 

Note that 
• : many to one mapping

1) Remove repeated tokens 
2) Remove the blank token <b> 

• : one to many mapping
• How to efficiently represent it? We use the trellis representation

𝑊 = ( ),  𝑇 = 5

𝑍 = (“<b>”, “s”, “e”, “<b>”, “e”),

𝑍 = ( )

𝑍 = ( )

𝑓 :𝑍  → 𝑊

𝑓−1:  𝑊  → 𝑍

<b> <b>

“see” (only 5 frames)

s e e

s <b>s ee

or



Example of 𝑍

• “s”, “e”, “e”
Then 

 or

 “s”, “<b>”, “e”, “<b>”, “e” or 

“s”, “s”, “e”, “<b>”, “e”
….   
This is an alignment problem 

Note that 
• : many to one mapping

1) Remove repeated tokens 
2) Remove the blank token <b> 

• : one to many mapping
• How to efficiently represent it? We use the trellis representation

𝑊 = ( ),  𝑇 = 5

𝑍 = (“<b>”, “s”, “e”, “<b>”, “e”) → 𝑊 = (???)

𝑍 = ( ) → 𝑊 = (???)

𝑍 = ( ) → 𝑊 = (???)

𝑓 :𝑍  → 𝑊

𝑓−1:  𝑊  → 𝑍

<b> <b>

“see” (only 5 frames)

s e e

s <b>s ee

or



Example of 𝑍

• “s”, “e”, “e”
Then 

 or

 “s”, “<b>”, “e”, “<b>”, “e” , or 

“s”, “s”, “e”, “<b>”, “e” , or
….   
This is an alignment problem 

Note that 
• : many to one mapping

1) Remove repeated tokens 
2) Remove the blank token <b> 

• : one to many mapping
• How to efficiently represent it? We use the trellis representation

𝑊 = ( ),  𝑇 = 5

𝑍 = (“<b>”, “s”, “e”, “<b>”, “e”),

𝑍 = ( )

𝑍 = ( )

𝑓 :𝑍  → 𝑊

𝑓−1:  𝑊  → 𝑍

<b> <b>

“see” (only 5 frames)

s e e

s <b>s ee

or



Trellis of 𝑍

84

<b>

s

<b>

<b>

<b>

e

e

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5



Trellis of 𝑍

85

<b>

s

<b>

<b>

<b>

e

e

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5

1. Must start at the first <b> or s 
2. Must end at the last <b> or e 
3. All characters can be repeated 
4. <b> can be skipped except when 

it is inserted between repeated 
character 
• “s”, ”<b>”, ”e”: we can skip 

<b> 
• “e”, ”<b>”, ”e”: we cannot 

skip <b> 

• We’ll consider all possible 
paths  

• Note that all arcs consume 
𝑍



Trellis of 𝑍

86

<b>

s

<b>

<b>

<b>

e

e

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5

1. Must start at the first <b> or s 
2. Must end at the last <b> or e 
3. All characters can be repeated 
4. <b> can be skipped except when 

it is inserted between repeated 
character 
• “s”, ”<b>”, ”e”: we can skip 

<b> 
• “e”, ”<b>”, ”e”: we cannot 

skip <b> 

• We’ll consider all possible 
paths  

• Note that all arcs consume 
𝑍



Trellis of 𝑍

87

<b>

s

<b>

<b>

<b>

e

e

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5

1. Must start at the first <b> or s 
2. Must end at the last <b> or e 
3. All characters can be repeated 
4. <b> can be skipped except when 

it is inserted between repeated 
character 
• “s”, ”<b>”, ”e”: we can skip 

<b> 
• “e”, ”<b>”, ”e”: we cannot 

skip <b> 

• We’ll consider all possible 
paths  

• Note that all arcs consume 
𝑍



Trellis of 𝑍

88

1. Must start at the first <b> or s 
2. Must end at the last <b> or e 
3. All characters can be repeated 
4. <b> can be skipped except when 

it is inserted between repeated 
character 
• “s”, ”<b>”, ”e”: we can skip 

<b> 
• “e”, ”<b>”, ”e”: we cannot 

skip <b> 

• We’ll consider all possible 
paths  

• Note that all arcs consume 
𝑍

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5
<b>

s

<b>

<b>

<b>

e

e



Trellis of 𝑍

89

1. Must start at the first <b> or s 
2. Must end at the last <b> or e 
3. All characters can be repeated 
4. <b> can be skipped except when 

it is inserted between repeated 
character 
• “s”, ”<b>”, ”e”: we can skip 

<b> 
• “e”, ”<b>”, ”e”: we cannot 

skip <b> 

• We’ll consider all possible 
paths  

• Note that all arcs consume 
𝑍

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5
<b>

s

<b>

<b>

<b>

e

e



Trellis of 𝑍

90

1. Must start at the first <b> or s 
2. Must end at the last <b> or e 
3. All characters can be repeated 
4. <b> can be skipped except when 

it is inserted between repeated 
character 
• “s”, ”<b>”, ”e”: we can skip 

<b> 
• “e”, ”<b>”, ”e”: we cannot 

skip <b> 

• We’ll consider all possible 
paths  

• Note that all arcs consume 
𝑍

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5
<b>

s

<b>

<b>

<b>

e

e



<b>

s

<b>

<b>

<b>

e

e

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑡 = 6



How to represent it as an actual function?

• We define an alignment variable as  
•
• The vocabulary set is augmented by the blank symbol <b> 

• We incorporate this random variable to  as follows:  

•  is represented by a neural network (Bidirectional LSTM or self-attention)

𝑍 = (𝑧𝑡 ∈ 𝒱 ∪ < b > | 𝑡 = 1,…, 𝑇 )
𝑍 = O = T

𝑝(𝑊 |𝑂)

𝑝(𝑧𝑡 |𝑂)

• : all possible  representing  
• Use a chain rule to further factorize  
• Perform conditional independence 

assumptions and ignore the 
dependency of previous alignments 

 (this is an approximation) 
• We need to solve the summuzation 

over all possible paths  

Exponential

𝑓−1(𝑊 ) 𝒁 𝑾

𝑍

𝑧1:𝑡−1

∑
𝑍



Agenda
• Alignment paths 
• CTC 
• RNN-Transducer 
• HMM (3-state left-to-right)



Speech recognition pipeline

Feature 
extraction

“I want to go to  
the campus”

RNN Transducer

94

𝑝(𝑂 |𝑊 )



Alignment path in the RNN-transducer

• Alternative alignment paths 
• : -length label sequence
• : -length input sequence

• Similar to CTC, consider all possible paths in the right-
side trellis 
• Start: left bottom corner, i.e., <s> (start of sentence) 

at  
• End: top right corner 
• ↑: output token (it does not consume the input 

frame, unlike CTC)! 
• : no output ( ) 
• W=(‘s’, ‘e’, ’e’)  Z=( , ‘s’, , , ‘e’, ‘e’, , ), (‘s’, 

, ‘e’, , , , ‘e’, ) etc. if  and 
•  is a many to one mapping (we can just 

remove 

• Consider all possible paths including the case that it 
allows the output of the token 

𝑊 = (𝑤1,  …,  𝑤𝐽 ) 𝐽

𝑂 = (𝒐1,  …,  𝒐𝑇 ) 𝑇

𝑡 = 1

∅

𝑓−1: ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ 𝑇 = 5 𝐽 = 3

𝑓 :𝑍 → 𝑊
∅

𝑊



Alignment path in the RNN-transducer

• Alternative alignment paths 
• : -length label sequence
• : -length input sequence

• Similar to CTC, consider all possible paths in the right-
side trellis 
• Start: left bottom corner, i.e., <s> (start of sentence) 

at  
• End: top right corner 
• ↑: output token (it does not consume the input 

frame, unlike CTC)! 
• : no output ( ) 
• W=(‘s’, ‘e’, ’e’)  Z=( , ‘s’, , , ‘e’, ‘e’, , ), (‘s’, 

, ‘e’, , , , ‘e’, ) etc. if  and 
•  is a many to one mapping (we can just 

remove 

• Consider all possible paths including the case that it 
allows the output of the token 

𝑊 = (𝑤1,  …,  𝑤𝐽 ) 𝐽

𝑂 = (𝒐1,  …,  𝒐𝑇 ) 𝑇

𝑡 = 1

∅

𝑓−1: ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ 𝑇 = 5 𝐽 = 3

𝑓 :𝑍 → 𝑊
∅

𝑊

∅ ∅ ∅ ∅

∅ ∅ ∅ ∅

∅ ∅ ∅ ∅

∅ ∅ ∅ ∅



Alignment path in the RNN-transducer

• Alternative alignment paths 
• : -length label sequence
• : -length input sequence

• Similar to CTC, consider all possible paths in the right-
side trellis 
• Start: left bottom corner, i.e., <s> (start of sentence) 

at  
• End: top right corner 
• ↑: output token (it does not consume the input 

frame, unlike CTC)! 
• : no output ( ) 
• W=(‘s’, ‘e’, ’e’)  Z=( , ‘s’, , , ‘e’, ‘e’, , ), (‘s’, 

, ‘e’, , , , ‘e’, ) etc. if  and 
•  is a many to one mapping (we can just 

remove 

• Consider all possible paths including the case that it 
allows the output of the token 

𝑊 = (𝑤1,  …,  𝑤𝐽 ) 𝐽

𝑂 = (𝒐1,  …,  𝒐𝑇 ) 𝑇

𝑡 = 1

∅

𝑓−1: ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ 𝑇 = 5 𝐽 = 3

𝑓 :𝑍 → 𝑊
∅

𝑊



Alignment path in the RNN-transducer

• Alternative alignment paths 
• : -length label sequence
• : -length input sequence

• Similar to CTC, consider all possible paths in the right-
side trellis 
• Start: left bottom corner, i.e., <s> (start of sentence) 

at  
• End: top right corner 
• ↑: output token (it does not consume the input 

frame, unlike CTC)! 
• : no output ( ) 
• W=(‘s’, ‘e’, ’e’)  Z=( , ‘s’, , , ‘e’, ‘e’, , ), (‘s’, 

, ‘e’, , , , ‘e’, ) etc. if  and 
•  is a many to one mapping (we can just 

remove 

• Consider all possible paths including the case that it 
allows the output of the token 

𝑊 = (𝑤1,  …,  𝑤𝐽 ) 𝐽

𝑂 = (𝒐1,  …,  𝒐𝑇 ) 𝑇

𝑡 = 1

∅

𝑓−1: ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ 𝑇 = 5 𝐽 = 3

𝑓 :𝑍 → 𝑊
∅

𝑊



How to represent it as an actual function?

• We define an alignment variable as  
• Vocabulary set is augmented by the blank symbol  
• Note that , not  

• We can introduce the following equations 

•  is represented by a special neural network that has the information of both  and 

𝑍 = (𝑧𝑘 ∈ 𝒱 ∪ ∅ |𝑘 = 1,…, 𝑇 + 𝐽 )

∅

𝑍 = 𝑇 + 𝐽 𝑇

𝑝(𝑧𝑘 |𝑓(𝑧1:𝑘−1), 𝑂) 𝑡 𝑖

99

• : all possible  representing 
• Use a chain rule to further factorize  
•  represents the partial token 

sequence up to 
• We need to solve the summuzation 

over all possible paths  

Exponential

𝑓−1(𝑊 ) 𝑍 𝑊

𝑍

𝑓(𝑧1:𝑘−1)

𝑘 − 1

∑
𝑍



How to represent it as an actual function?

• We define an alignment variable as  
• Vocabulary set is augmented by the blank symbol  
• Note that , not  

• We can introduce the following equations 

•  is represented by a special neural network that has the information of both  and 

𝑍 = (𝑧𝑘 ∈ 𝒱 ∪ ∅ |𝑘 = 1,…, 𝑇 + 𝐽 )

∅

𝑍 = 𝑇 + 𝐽 𝑇

𝑝(𝑧𝑘 |𝑓(𝑧1:𝑘−1), 𝑂) 𝑡 𝑖

100

• : all possible  representing 
• Use a chain rule to further factorize  
•  represents the partial token 

sequence up to 
• We need to solve the summuzation 

over all possible paths  

Exponential

𝑓−1(𝑊 ) 𝑍 𝑊

𝑍

𝑓(𝑧1:𝑘−1)

𝑘 − 1

∑
𝑍

 s, e,𝑓(𝑧1:𝑘−1) =



Example of  in CTC𝑍

• “s”, “e”, “e”
Then 

 or

 “s”, “<b>”, “e”, “<b>”, “e” , or 

“s”, “s”, “e”, “<b>”, “e” , or
….   
This is an alignment problem 

Note that 
• : many to one mapping

1) Remove repeated tokens 
2) Remove the blank token <b> 

• : one to many mapping
• How to efficiently represent it? We use the trellis representation

𝑊 = ( ),  𝑇 = 5

𝑍 = (“<b>”, “s”, “e”, “<b>”, “e”),

𝑍 = ( )

𝑍 = ( )

𝑓 :𝑍  → 𝑊

𝑓−1:  𝑊  → 𝑍

<b> <b>

“see” (only 5 frames)

s e e

s <b>s ee

or



Example of  in RNN-trans.𝑍

• “s”, “e”, “e”
Then 

 or

or 
….   
This is an alignment problem 

Note that 
• : many to one mapping

1) Remove repeated tokens 
2) Remove the blank token <b> 

• : one to many mapping
• How to efficiently represent it? We use the trellis representation

𝑊 = ( ),  𝑇 = 5

𝑍 = (∅, ‘s’, ∅, ∅, ‘e’, ‘e’, ∅, ∅),

𝑍  = (‘s’, ∅, ‘e’, ∅, ∅, ∅, ‘e’, ∅),

𝑓 :𝑍  → 𝑊

𝑓−1:  𝑊  → 𝑍

“see” (only 5 frames)

or
∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅

s e, e

s e e



CTC vs. RNN-T

• CTC • RNN-transducer



Agenda
• Alignment paths 
• CTC 
• RNN-Transducer 
• HMM (3-state left-to-right)



Speech recognition pipeline

Feature 
extraction

“I want to go to  
the CMU campus”

Acoustic 
modeling Lexicon Language 

modeling

G OW T UW

“go to”
“go two”
“go too”
“goes to”
“goes two”
“goes too”

G OW Z T UW



Introduction of HMM states 

• Two differences 
• Phoneme sequence  instead of word sequence  
•  instead of  or  due to the Bayes theorem

1. Decompose the word sequence to the phoneme sequence by using a pronunciation dictionary 

 “one,” “two”   /W/, /AH/, /N/, /T/, /UW/
2. Introduce the silence related symbols 

• Silence begin (/SilB/): placed in the beginning of the sentence 
• Silence end (/SilE/): placed in the end of the sentence 
• Short pause (/SP/): placed between the words (can be skipped) 

 /W/, /AH/, /N/, /T/, /UW/   /SilB/, /W/, /AH/, /N/, /SP/, /T/, /UW/, /SilE/ 

3. Expand each phoneme with three states 

 /SilB/, /W/, /AH/, /N/, /SP/, /T/, /UW/, /SilE/ 

    /SilB/1, /SilB/2, /SilB/3, …, /T/1, /T/2, /T/3, /UW/1, /UW/2, /UW/3, … 
• This structure is widely used, but there are some variants (e.g., short pause can be one state)

𝐿 𝑊

𝑝 (𝑂 |𝐿) 𝑝 (𝐿 |𝑂) 𝑝 (𝑊 |𝑂)

𝑊 = 𝐿 =

𝐿 = 𝐿′￼=

𝐿′￼=



HMM-based 
(Classical) CTC

RNN-
transducer

Attention-
based



HMM-based 
(Classical) CTC

RNN-
transducer

Attention-
based

Use phoneme Do NOT use phoneme



Trellis to find all possible paths

• Left-to-right HMM without skip 
• Each state must have at least one frame 

• Example, 3 state left-to-right HMM (/UW1/, /UW2/, /
UW3/) and expand it with 5 frame speech sequences

/UW1/ /UW2/ /UW3/

/U
W

1/
/U

W
2/

/U
W

3/

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5



Trellis to find all possible paths

𝑡 = 1

/U
W

1/
/U

W
2/

/U
W

3/

𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5

• It must start at the initial state (/UW1/) 
• It must end at the final state (/UW3/)



Trellis to find all possible paths

• Red arrows cannot reach the final state

𝑡 = 1

/U
W

1/
/U

W
2/

/U
W

3/

𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5



Trellis to find all possible paths

• If we have some skips…

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5

/U
W

1/
/U

W
2/

/U
W

3/



Trellis to find all possible paths

• If we have some skips…

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5

/U
W

1/
/U

W
2/

/U
W

3/



Variant of HMMs

• Left to right  
• We mainly use this 

• Left to right with skip 
• 2nd order in this example 

• Ergodic (fully  
connected) 
• No specific order 

anymore…

/UW1/ /UW2/ /UW3/

/UW1/ /UW2/ /UW3/

/UW1/ /UW2/ /UW3/



Phoneme sequence

• We just connect the HMMs for each phoneme

/T1/ /T2/ /T3/ /UW1/ /UW2/ /UW3/



Let’s check three distributions

• CTC • RNN transducer

• HMM
Which part is similar?



Let’s check three distributions
• CTC • RNN transducer

• HMM Which part is similar? 
 All are based on  

 We can compute them based 
on the dynamic programming

∑
𝑍 or 𝑆

∏
𝑡

𝑓(𝑡)



Summary

• CTC, RNN-transducer, and HMM are represented by a similar 
function form, i.e., 

• All possible alignments are constrained by each method  

• The most difficult issue in speech recognition: the input and output 
lengths are different 
• We need some alignments 

• The soft alignment case 
• We use an attention-based neural network  (this will be introduced later). 

• The hard alignment cases 
• We explicitly introduce an alignment path . 
• We can use it for CTC, RNN-transducer, and HMM-based approach

∑
𝑍 or 𝑆

∏
𝑡

𝑓(𝑡)

𝑍


