Classical and Modern
formulations of ASR

Berkeley

(N

N L P
EECS 183/283a: Natural Language Processing

Speech recognition /‘\

AN

W = argmax p(W|O)
Wew w “I want to go to

campus”
Speech recognition g

-

Feature >
extraction

2
E
1

LITITTIIT] ¢

End-to-end speech recognition /]\

W = argmax p(W|O)
Wew W« want to go to

campus”
Neural network g

Feature
extraction
| .:w

. 1
*WWW ¥

aannnnan SR RS

How to obtain the posterior »w(o)

* We just replace it with a neural network-based function f(.)

argmax p(W10) = argmax f**(W|0)
W W

« Easy and simple, no math (in this level), however

* wis a sequence! W =(wn€Vin=1..,N)

« Very difficult to deal with it
* Say N =10, |7| = 100, we have to deal with 100" possible sequences

* Also, the length ~ is variable

e We have to use a special neural network (e.g., attention, CTC, and RNN-
transducer)

e Classical speech recognition

Speech recognition /N

AN

W = argmax p(W|O)
Wew w “I want to go to

campus”
Speech recognition g

-

Feature >
extraction

2
E
1

LITITTIIT] ¢

Classical (hon-end-to-end) speech /]\

recognition

W = argmax p(W|0O)

Wew “| want to go to

_ cam pus”
Feature Acoustic Language
: Lexicon
extraction modeling modeling

Speech =2 Text

Speech o:

Text W: | want to go to the campus

Speech =2 Phoneme = Text 4%

Speech o:

SR g

Phoneme L: AYWAANTTUWGOWTUWKAEMPAHS

=5k g

Text W: 1 want to go to campus

How to obtain the posterior »wo)

e Factorize the model with phoneme

*Let L— (e {/AA/, /AE/, - Yi=1,--) be a
phoneme sequence

— L S |
arg mme}xp(W]O) arg max zL:p(W, O0) um rule

— arg maxz p(O|W, L)p(LIW)p(W) Bayes+ Product rule
VT

p(0) |
lgnore p(0) as it
= argmax Z p(O|W, L)p(L|W)p(W) does not depend
L on w
= arg max Z p(O|L)p(L|W)p(W) Conditional
W L independence

_ — . . assumption_
Note: the right hand side is not the probability as it lacks a sum to one constraint

Noisy channel model /]\

argmaxp(W'| 0) = argmaxp(O | W)p(W) ~ argmax) p(O| Lp(L|W)p(W)
L

e Speech recognition

* p(O|L): Acoustic model (Hidden Markov model)

e »(L|W): Lexicon

* p(W): Language model (n-gram)

Noisy channel model /]\

W: Target
language text
Y: Source language

argmaxp(W|Y) = argmaxp(Y‘ W)Hp(W)
W W text

« Machine translation
* p(¥|w): Translation model

* p(W): Language model

IIIIIIIIIIIIIIIIIIII

uuuuuuu

Speech recognition pipeline /]\

L

G ON T UW
GOWZTUW “I want to go to

_ campus”
Acoustic : Language >
: Lexicon i
modeling modeling

Feature
extraction

“go .to”

“go two”

“gO +00” W
“goes to”

“goes two”

“goes too” .

W = argmax p(W|O)
wew

Speech recognition pipeline /]\

GOW T UW
GOW ZT UW “
| want to go to
D_[Feature]~»[Acoustic }»[Lexi }»[Language]¥>campus
: exicon .
extraction modeling modeling
ol
e m : : : “go .to”
: : : “go tWO)
(mm “go t00” mg?aXE:pﬂﬂLnﬁLﬂVnﬁwﬂ
(0 “goes to”

“goes two”
“goes too”

p(O|L) p(LIW) p(W)

Please remember the noisy channel mo?é]\

e Factorization

e Conditional independence (Markov) assumptions

We can elegantly factorize the speech recognition
problem with a tractable subproblem

Main blocks of Classical ASR /]\

“I want to go to

_ campus”
Feature Acoustic : Language >
) : Lexicon]
extraction modeling modeling
it (b

AL

Speech recognition pipeline

Feature
extraction

{

GOWT UW
GOW ZTUWW

“I want to go to

Acoustic]
i Lexicon
modeling I { I {

Language
modeling

] campus”
»

“go .to”
“90 two”
“go 'tOO”
“goes to”
“goes two”
g

“goes too”
g

p(O|L) p(L|W)

p(W)

Waveform to speech feature

Lk s ALk
"W’WV‘W Featu_re >
extraction

» Performed by so-called feature extraction module

« Mel-frequency cepstral coefficient (MFCC), Perceptual Linear
Prediction (PLP) used for Gaussian mixture model (GMM)

e Log Mel filterbank used for deep neural network (DNN)

e Time scale
e 0.0625 milliseconds (16kHz) to 10 milliseconds

e Type of values
o Scalar (or discrete) to 12—40 dimensional vector

—

Speech recognition pipeline /‘\

GOWT UW
GOWZTUW “I want to go to

campus”
Feature Acoustlc Language >
Lexicon]
extractlon modellng modeling
A

“go to”

“go two”
“90 t00”
“goes to”
“goes two”
“goes too”

p(O|L) p(LIW) p(W)

Speech feature to phoneme

« Performed by so-called acoustic modeling module

1

Acoustic
modeling

},

G ONW T UW

e Hidden Markov model (HMM) with GMM as an emission probability function
« Hidden Markov model (HMM) with DNN as an emission probability function

e Time scale

e 10 milliseconds to ~100 milliseconds (depending on a phoneme)

e Type of values

« 12-dimensional continuous vector to 50 categorical value (~6bit)

« The most critical component to get the ASR performance

e It can be a proba

GOWT UW

nility of possible phoneme sequences, e.g.,

or

GOW Z T UW

with some scores

Acoustic model po| L)

O and L are different lengths

 Align speech features and
phoneme sequences by using

©- 8 > 8 - |] or

UW, UW, UW;

* Provide p(0|L) based on this | * |
alignment and model uw, UW, Uw;

« The most important problem in
speech recognition

How to formulate an acoustic mode

e Acoustic model:

"®
.1

y‘“'~ 4 TV or

i JII)
IV
i | jll ..I

e Again, O and L are different lengths

O=(0; €RPt=1,...,T) FARRAERAER AR ERERRE

Hard alignment
problem similar to

CTC and RNN-T
06:18

/UW/

L=(c{/AA/, JAE/,---Yi=1,---,J)

N
_l
N
N
C
=
N

&

N
N [OOOIIIIrm o

 |If we assume that the alignment
information is given, the problem
becomes easy

p(O|L) = p(O1.1y, O1y 41:15, -+ - |11, L2y -+)

Speech recognition pipeline /‘\

GOWT UW
GOWZTUW “I want to go to

_ campus”
Feature Acoustic : Language >
: Lexicon i
extraction modeling modeling
A A
b d

W “go to”
“go tWO”
“90 t00”
“goes to”
“goes two”
g

“goes too”
g

p(O|L) p(LIW) p(W)

Phoneme to word

G OW T UW _{ Lexicon }’ “gO tO”

e Performed by lexicon module
o« American English: CMU dictionary

e Time scale

e 100 milliseconds (depending on a phoneme) to 1 second (depending on a
word and also language)

e Type of values
o 50 categorical value (~6bit) to 100K categorical value (~2Byte)

« We need a pronunciation dictionary

e It can be multiple word sequences (one to many)

Lexicon p(L| W) /]\

» Basically use a pronunciation dictionary, and map a
word to the corresponding phoneme sequence

« with the probability = 1.0 when single pronunciation

e with the probability = 1.0/J when multiple (J)
pronunciations

p(LIW) = p(/T/, /OW/|"two”) = 1.0

Speech recognition pipeline /‘\

GOWT UW
GOW Z T UW “
| want to go to
CMU campus”
D_[Feature]~»[Acoustic }»[: }» P
: Lexicon]
extraction modeling modeling
":y el [k
n/mm “go to”
: : : “go tWO)
NN “go too”
0 “goes to”

“goes two”
“goes too”

p(O|L) p(LW) p(W)

Word to text

“go 'tO”
¢ 9 » Language > “qo0 to”
go two {modeling} g

“go tOO”

* Performed by language modeling module p(w)
e N-gram
e Neural language model (recurrent neural network or transformer)

o From training data, we can basically find how possibly “to”,
“two”, and “too” will be appeared after “go”

e Part of WSJ training data, 37,416 utterances

e “goto”: 51 times
e “gotwo”:
o “gotoo”:

THE WALL STREET JOURNAL.

Word to text

“go 'tO”
¢ 9 » Language > “qo0 to”
go two {modeling} g

“90 too”

* Performed by language modeling module p(w)
e N-gram
e Neural language model (recurrent neural network or transformer)

o From training data, we can basically find how possibly “to”,
“two”, and “too” will be appeared after “go”

e Part of WSJ training data, 37,416 utterances
e “goto”: 51 times
e “gotwo”: 0times
e “go0t00”: 0 times

Word to text

“go 'tO”
¢ 9 » Language > “qo0 to”
go two {modeling} g

“90 too”

* Performed by language modeling module p(w)
e N-gram
e Neural language model (recurrent neural network or transformer)

o From training data, we can basically find how possibly “to”,
“two”, and “too” will be appeared after “go”

« WSJ all text data, 6,375,622 sentences
e “goto”: 2710 times
e “gotwo”:
o “gotoo”:

Word to text

« — Language > “qo0 to”
go {modeling} 9

go
00”

* Performed by language modeling mod ¢
e N-gram
e Neural language model (recurrent neural network or transformer)

1

e From training data, we can basically find how possibly “to”, “two”,
and “too” will be appeared after “go”

« WSJ all text data, 6,375,622 sentences

e “goto”: 2710 times

e “gotwo”: 2 times, e.g., “those serving shore plants often go two hundred miles or
more”

e “gotoo”:

Building speech recognition was really
difficult...

GOWT UW
GOW Z T UW »
| want to go to
[campus”
Feature Acoustic : Language > P
i : Lexicon]

L extraction }{ modeling }{ }{ modeling }
e {3 b}

[go to

: : : “go tWO)

NN “go too”

0 “goes to”

“goes two”
“goes too”

« We need to develop all components
« Each component requires a lot of background knowledge

« We need to tune hyper-parameters in each module

Next: End-to-end speech recognitic%rq\

“I want to go to

Foat campus”
S ca ”.re " Neural network g
extraction
L (4
rn‘v

)

LITITTIIT] ¢

 We can simply the complicated models
e Optimize all components by using back propagation
e We still need some formulations to make a problem tractable

e Output

e Alighments

Output unit

GOWZTUW]|
—{ [s e [
. m) “go to”
 Our final goal: output a text EE% 30 e
oes o

“goes too”

e Text can be represented by several forms
 Word, Character, phoneme, etc.
 We will discuss the characteristics of each output unit

Which unit?
End-to-End ASR case

How to describe the phrase “go to”?
« Word
e “go0” and “to”
« More semantic/syntactic
« Very large vocabulary size, e.g., | 7"| would be 100K
e Out of vocabulary issue ®

* The length (N = 2) is very short. Less computational cost, but
larger mismatch between the input and output lengths

o Character

() BN () N (A (A

g” “o” “ “"t” and “0” (“_” means the space)

o The vocabulary size is not large in general. ~30 in the Roman
script, ¥10K in the Chinese script

* No out of vocabulary issue (rarely happens) ©

* The length (N = 5) becomes longer. More computational cost,
but relaxing the mismatch between the input and output lengths

« BPE: Byte Pair Encoding (sentence piece)
° llgo to” 9 ll_g” HO” H_toll (N — 3)
« Something between, we can also control the vocabulary size

In general, we do not specify which unit we use in our lecture since this
is one of the model configurations.

Which unit?
HMM-based (classical) system

How to describe the phrase “go to”?

e Phoneme

e “goto” 2> “GOWTUW”
 More acoustic
« The phoneme vocabulary size is not very large in general

* The length (N =5) becomes long (like the discussion in the (Roman) character).
« We need a dictionary
e If we use a phone, we can make this part language-independent

« State (hidden Markov model state)

e We further decompose a phoneme into several states

e Furthermore acoustic

e Classically, we use this representation a lot (e.g., 3-state HMM)

e It makes the unit further longer and the mismatch between the input and output lengths is further relaxed
e It will be introduced later in HMM

Which unit practically?

e Mostly, we use BPE (or sentence piece)

 We need to set the maximum number depending on the training
data

e Character for the low-resource case or Chinese and Japanese
e Chinese/Japanese has ~10,000 characters

« Some languages do not have scripts
« Phoneme, phone
e Translation to the other languages (not ASR but speech translation)

Today’s agenda

e Alignments

HMM-based (classical) speech recognition
pipeline

GOWT UW
GOW Z T UW 3
| want to go to
[campus”
Feature Acoustic : Language > P
) : Lexicon]
| extraction }{ modeling }{ }{ modeling }
NWWW (14)

[go to

: : : “go tWO)

m{m{w “go too”

0 “goes to”

“goes two”
“goes too”

p(O| L) p(L|W) p(W)

Speech recognition /‘\

AN

W = argmax p(W|O)
Wew w “I want to go to

campus”
Speech recognition g

-

Feature >
extraction

2
E
1

LITITTIIT] ¢

End-to-End ASR /\\

* Direct mapping function from speech feature sequence o
to text w

e Usually, it does not deal with the phoneme-based
intermediate representation

 Mainly three architectures

e Attention-based
e Decoder-only is also included here (not fully end-to-end)

e Connectionist temporal classification (CTC)
e Recurrent neural network transducer (RNN-T)

HMM-based

T
(Classical) SIE

+

RNN- Attention-
transducer based

Non End-to-End End-to-End

HMM-based
(Classical)

CTC

'
RNN- Attention-

transducer based

Attention-based ASR

Y1 Yo Y3 Y4 Y5 Y Y7 Yg Yg Ym
I t*s time

BEREEEE IR

C *ENC?DER’)HSS[I I T lDFCfDI!ERnL I

Shorter sequence X X4 e Xp

1 1
/ Subsampling \
}

80-dimensional ! ¢
log Mel spectrum f1 lt
]

per frame
Feature Computation

f

4—sts- i

10T ER] Schematic architecture for an encoder-decoder speech recognizer.

Listen Attend & Spell (2016)

Attention-based ASR /N

e Our staring point p(w'|0)
* Input:0o=(o,|t=1,...,7)
» Itis difficult to deal with w= (w, e 7|i=1....N)
* T+N

* Instead, we factorize p(w|0) as follows based on a probabilistic chain
rule

p(W|0) = || p(wilws.i—1,0)

1=1

Attention-based ASR /N

e Our staring point p(w'|0)
e Input: 0=(o,|t=1,....T)
- Itis difficult to deal with w= (w, e 7|i=1.....N)
* TN
* Instead, we factorize p(W | O) as follows based on a probabilistic chain rule

p(W10) = | [p(wilwi.i1,0)

1=1

e This neural network is handled by an attention-based method to align the
input and output (soft alignments)

« We usually do not use the phoneme

Whisper (OpenAl

p(W10) = | | p(w;|wy.;_1, O)
1=1
EN T;;‘,';i' 0.0 | The |quick brown ...
next-token
prediction
-
(MLP)
(~ N
(MLP] [cross attention |
[selfattention | [selfattention |
~ T - - i
. ,9 .
. b= : .
| () |
Transformer _{ e ™ = e ™
Encoder Blocks (MLP) * (MLP) Transformer
| selfattention | 8 | cross attention | Decodar Slocis
\ — / G >
() [self attention |
(MLP) _ J
4)
[selfattention | (MLP)|
- \ —'_i—‘) :
Sinusoidal — (__cross attention
Positional [self attention |
Encoding & J
Learned
/ 2 x ConviD + GELU Positional
Encoding
SOT| EN |48 0.0 | The |quick| ...
Log-Mel Spectrogram Tokens in Multitask Training Format

A sketch of the Whisper architecture from Radford et al. (2023). Because
Whisper is a multitask system that also does translation and diarization (we’ll discuss these
non-ASR tasks in the following chapter), Whisper’s transcription format has a Start of Tran-
script (SOT) token, a language tag, and then an instruction token for whether to transcribe or
translate.

Alignments

L)

HEEEEEEE

L)

LI T T PTT]

HEEEEEEE

D

Speech features
o (|o| =35)

Token
w(|w| =3)

How many %

o,/ J
S

is aligned-

Soft alighments

LI T T T T]
LI T T T T I
LI T T T T T
LI T T T T TT1]
LI T T TTT]
LI T T T T TT1]
LI T T T T TT1]
LLT T T TTT]
LI T T T T TT1]
LI T T T T T1]
LI T T T T TT1]
LI T T T T]
LTI T TTT]
LI T T T T TT]
LI T T T T TT0]
LT T TTTT]
LI T T T T T
LI T T T T T
LI T T T T T
LI T T T T T
LLT T T TTT]
LI T T T T T
LIT T T T T1]
LLT T T T Tl
LI T T T T T1]
LI T T T T T0]
LI T T T T T0]
LIT T T T]
LTI T Tl
LIT T T T T0]
LIT T T T TT]
LTI T TTT]
LI T T T T T
LI T T T T T
LI T T T T T

o
(7}

rp N~

@

@

1 2 3 4 5 6 7 8 9 1011

12

13

14 15

16

17

18

19

20

21

22

23

24

25

26

27

28

29 30 31 32 33 34 35

Soft alighments

— — p— — — p— — f— — f— f— f— [— — f— f— f— f— — f— — [— f— f— f— f— f— — [— p— f— f— f— f— —
]]]] — f— —] f— —] f—] —]]]]]]]] b]]]]]]]]]]]]]] e
f]]] f— f—] f— f— —] f— f— f—] f— f— — — f— f—] f— — — f— f— —] — b— —] f— — —] f— — —] f— — —
] e] e]
]]] e —] f— —] f— —] f—] — —]]]]]]]]]]]]]]]] e]]]]]] e
f]]] f— —] —] f— —] — — —] b e —]] e] b]]] e]]]]]]]]]]]] e
] e] e e f— p—] — —] b] e
]]]] — f— —] f— —] —] —] e
e L B e B e e B e B e B L B e B e B e L T S R e e B e e L B O e B e R e R R e L Sy SN) N === S

How many %

o, J’

e” is aligned?

(=)
@
@

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

How many %

o, J’

e

Soft alighments

is aligned?

@

LT T TTTT]
LI T T T T T
LI T T T T T

T 4= (a, € o1][r=1...7)
ngh ajt > O, Z ajt =1

Attention-based approach
is based on the soft

.
1 N-rM

1 2 3 45 6 7 8 9 10 11 12

13

14 15

16 17 18

tgnment

Al
19 20 21 22 23 24 25 26 27 28 29 30 3?

Connectionist Temporal Classification

Y(output) |d|i||ninje|r
remove blanks | d || i n nie r
merge duplicates |[d| i ||uf N [|N]|l€ r -
A (alignment) [d|i |a|n|n|alnjelr|rjr|ria|a
T S T T e S S e e e
X (input) [Xq|[X2|X3 | X4 || X5 || X6 || X7 || X8 || X0 |X10|*11/X12/X13|X14

13T CBERR] The CTC collapsing function B, showing the space blank character _; re-
peated (consecutive) characters in an alignment A are removed to form the output Y.

The CTC collapsing function is many-to-one; lots of different alignments map
to the same output string. For example, the alignment shown in Fig. 15.13 is not
the only alignment that results in the string dinner. Fig. 15.14 shows some other
alignments that would produce the same output.

dilifli|n|lolninjelelelr|r{r|u
did/|i|ninllalnie|r|r|a/alelu
didjd|i|lnfo/nin|alalalelr|r

10TU G EREY Three other legitimate alignments producing the transcript dinner.

RNN-Transducer

P (Yt ul X4 Yir.u1p)

SOFTMAX
PREDICTION ki
[= hpm[JOINT NETWORK | + DECODER

Yu-1

(' ENCODER)
f

Xt

IDTuCHERYWE The RNN-T model computing the output token distribution at time ¢ by inte-
grating the output of a CTC acoustic encoder and a separate ‘predictor’ language model.

CTC or RNN transducer cases /‘\

e Again, our staring point p(w|0)

 We introduce a hard alignment path
as a random variable:

Z=(z,e€?7’'|t=1,.,T)
 We consider the following equations

p(W|0) =Y p(Z,W|0)

=) p(Z|0)p(W|Z,0)

Alignments

L)

HEEEEEEE

L)

LI T T PTT]

HEEEEEEE

D

Speech features
o (|o| =35)

Token
w(|w| =3)

Hard Alignments /‘\

Hard Alignments

................................
...........

||
|||||||||||||||||||||

.....................
...........

Ilell Ilell
How to represent this

information
mathematically?

|
LITTTTTT]

LIT T P10
LITIT P T}

Alignment variable

[TTTTTTT]

o [TTTTTTT]

LITTTTTT]
[TTTTTTT]

One

possible Z sss
realization

of

alignments

Alignment variable /\\

io_ 7 o_ ao_ a_ N

[TTTTTTT]

o [TTTTTTT]

LITTTTTT]
[TTTTTTT]
[TTTTTTT]

o [TTTTTTT]

The other
possibility

N
»
»
»
»
o
@
@

('D=

Hard alignments

|||||||||||||||||||||
|||||||||||||||||||||

LIT T T T TT]
LIT T T T T]

LIT T T TTT]
LIT T TTT]

|||||||||||||||
|||||||||||||||||||||

We can represent a path HMM, CTC, and RNN-
as a sequence variable 2, =“s" 2,="s" .., z.="“e" .., z,="“e” Transducer are based on

ll’

This is called a hard alignmept= ;e (“s”, “c”, .}t =1,..T) the hard alignment 60

CTC case

* Again, our staring point p(w|0)
 We introduce a hard alignment path as a random variable: z=(z, e 7'|t =1,...,T)
* We consider a set of all possible alignment paths representing w. We call this set as zw)

 We incorporate this random variable to p(w | 0) as follows:

p(Wl0)= > p(Z[O)

« zisasequence and it is difficult to deal with. Similar to the attention case, we use a chain rule to
further factorize this equatlon

p(W10) = Z Hp z¢|21:4, O

zZeZ(W

* This is not very difficult compared with an attention-based method, since z and o are
based on the same length 1

e RNN transducer can also be formulated in a similar manner

Difference between E2E and HMM-basec?/]\

* pw|0) (end-to-end)
* p0|L) (HMM based)

* In p(w|0) and p(0| L), there are two differences

Simple case

Ty W e
Q HIARRREA
= k "*-u:. e

» We know that phoneme /T/ is " 06 18
aligned with 0,, and phoneme / IIIIIIIIIIIIIII
UW/ is aligned with o, ,, HEEE

/T/ /UN/

p(01:18‘/T/7 /UW/)
= p(Owvs|/T/)p(O¢.18|/UW/)

This factorization is very natural if they are aligned

Simple case

———
—
—- ; ~
=, g .
—t .
= T
S
- Fae
- o o
o
T o=
e
= e —

» We know that phoneme /T/ is O Opas
aligned with 0,, and phoneme / IIIIIIIIIIIIIII
UW/ is aligned with o, ,, HEEE

/T/ /UN/

p(Or.1s]/ T/, JUW/) = p(O1:5, Os.18]/ T/, JUW/)
= p(01:5|Qs18, / T/,
= p(O1:5]/T/)p(Os:15

)p(O6:18| LXT, JUW /)

Conditional independence assumptions
e Note that the conditional independence

assumptions are “approximation or
modeling”
« Not based on the derivation.

General case

 Factorize for each phoneme:

p(O|L) — p(OlzT170T1+1:T27 T |l17 l27 e)

:p(OlzT1|OT1+1:T27"' 7llal27°")p(OTl—i—l:Tza"' 7’llal27"')
:p(OLTllll)p(OTl-{—l:Tz?'°° 7’l17l27"°)

p(01:T1 |l1)p<OT1+1ITQ ‘ZQ) TR

J
Hp(OTj—1+1ITj |lj)
1=1

If we know the alignment
information, we can factorize the
acoustic model probability for
each phoneme

We use conditional
independence assumptions very
aggressively

General case

 Factorize for each phoneme:
p(O|L> — p(OlzT170T1+1:T27 T |l17 l27 e)
= p(O1.1y Oy 411, -+ 5 lis lay -)p(O1 4115, -+ 5 |li, lg, - -+) Product rule

~
~~—o
-~
~~—o

Bl) (chain rule)

~~~~~

T, |Conditional independe
assumption

p(O1.1, [11)p(O1y 411, |12) - - .
e If we know the alignment

J
HP(OTj_1+1:Tj 1) information, we can factorize the
i=1 acoustic model probability for
each phoneme
« We use conditional
independence assumptions very
aggressively



Word -> Phoneme -> State

« We need a more precise unit to present

an acoustic dynamics

IltWO”

Introduce phoneme representation

/SILB/ /T1/ /UN/ /SILE/

SILB, SILB, SILB; T, T, T UWN, UN, UN; SILE; SILE, SILE,

Introduce further
precise representation
(we call it state)




e Alighment problem

L L1 A S B e I

SILB, SILB, ST, T, UW, UW, UW; SILE, SILE, SILE,




UW, UW, UW; or

UW, UW, UW; ? ? ? ?




We don’t know the alignment /%
information... 11

8.» 8»%}?

o, o o, We use
\ I I | |—,”v| |l
/ : | We will use the similar
UW, UW, UW, formulation (introducing

alignment variable z) to
CTC/RNN-T



Interim Summary

« The most difficult issue in speech recognition: the input and
output lengths are different

« We need some alignments

e The soft alignment case

« We use an attention-based neural network (this will be introduced
later).

e The hard alignment cases

* We explicitly introduce an alignment path Zz.
« We can use it for CTC, RNN-transducer, and HMM-based approach



HMM-based

T
(Classical) SIE

+

RNN- Attention-
transducer based




Non End-to-End End-to-End

HMM-based

CTC
(Classical)

f
RNN- Attention-

transducer based




Hard alighnment

HMM-based
(Classical)

CTC

P

RNN- Attention-
transducer based

Soft alignment




Monotonic vs. non-monotonic /‘\

 Machine translation case (non monotonic)
| really need it

)T

Ich brauche das wirklich

[TTT[TT]
]

230 2rition case (monotonic)

[TTT]TT]
A Y
[ TTTTTT]

e Speec




e Alignment paths
o« CTC




Speech recognition pipeline /]\

p(O| W)

“I want to go to

{ the CMU campus”
Feature >

O_’I I CTC l

extractlon

77



Hard alignments for
repeated tokens

« Hard alignment examples EEEE

Y HOW to diStingUiSh them? Z sssseeeeeeeececeecececeeceecececececeeceeceececeeee e
(ll ” II »n  «u ”) llllllllll
VS.

((( »n  (( ”)

e Both are written as

® / = (sssseeeeeeeeeeeeeeceee...)



Hard alignments for
repeated tokens

e Hard alignment examples

e e eeeeeee eeeeeeeeee eeeeeeeeee e e

« How to distinguish them? z

(II ” II ” ”)

-

VS.

((( »n  (( ”)

e Both are written as

® / = (sssseeeeeeeeeeeeeeceee...)
« We introduce the blank symbol! EEEE E

* Z = (sssseeeeeeeee < b > eee...)



Introduction of blank symbol <b>

e First, we insert <b> to the character sequence “see”
% W (ll ” l( ” l(ell), Where |W| :J

* Then, expand w’ to the frame length 7to form z

e Assuming that 7 > s in general: We cannot use CTC if it is not satisfied

« All tokens and <b> can be repeated to adjust the length
o For example, if “e” is repeated three times EE E
e w="e"2> z=(¢e" "e" "e”)
e w="e"2> z=_"e" "“e" ”<b>”)
e w="e"2> Zz=("e" "“<b>", “<b>")

« <b>must be inserted between repeated character
e w=("e" “e”), then z=(."e","<b>", "e”...): we cannot skip <b>
e w=("s",“e"), then, z=(.."s", “e”...): we can skip <b>



Example of z

“see” (only'5 ’r!a es

o n o N u_ )

° W=(S)ele)7T=5
Then

Z — ($$<b>”, “S”, Gée”, 66<b>”’ “e”), Or

Z — ( llsﬂ' Il<b>”’ (le”' ll<b>”’ lle”), Or

PRV NN Il<b n o n

Z=(S, S, €&, >, e, 0r

This is an alignment problem




Example of z
“see” (only 5 l‘l‘ld es

- W — (e, ey, T — 5
Then

Z = (rabmr, v, va, “cbmt, Y@y —» W = (77T
Z = (s, “<b>", “e”, “<b>", “@”) — W = (227)
Z — Cuan, o, s, o, ey W == (227D

- f:Z — W:many to one mapping
1) Remove repeated tokens
2) Remove the blank token <b>

s w=("s","e", “e"), 7=5

Then

Z = (“<b>7, 457, 7, “<b>, fe) > W= (277)

Z =("s", “<b>”, “e”, “<b>”, “e”y - w= (277
z=("s","s”, “e”, "<b>", “e”y - w=(277)

<b> s e <b> e

or
* f:Z — W:many to one mapping
1) Remove repeated tokens
2) Remove the blank token <b>
S S e

<b> e



Example of z

o n o n u )

* W=(Ss, e, €e)T=5

Then

Z — (‘C<b>”, “S”, Gﬂe”, 66<b>”, 666”), Or

Z — ( llS”' Il<b>II’ (lell’ ll<b>II’ llell), Or
o 12 «_n «_»n Il<b ”n

Z=(S, S, €&, >, e, 0r

This is an alignment problem

Note that

* f:Z — W:many to one mapping
1) Remove repeated tokens
2) Remove the blank token <b>

e . w - Z:oneto many mapping
« How to efficiently represent it? We use the trellis representation

’e" (only 5 ’r!a es




<b>

<b>

<b>

<b>

84




Trellis of z

<b> e © © © ©

1. Must start at the first <b>or s
e P PY PY PY PY 2. Must end at the last <b> or e
3. All characters can be repeated
<b> e © ® ® ® 4. <b> can be skipped except when
e o o o o o it is inserted between repeated
character
<b> ® ® ® ® ® o ”S”, ”<b>”, nen: we can Sk|p
<b>
S o o o [ ®
uen’ ”<b>”, nen: we cannot
<b> e © © © © skip <b>



Trellis of z

<b> e © © © ©

1. Must start at the first <b>or s
e o ° ° ° ° 2. Must end at the last <b>or e
3. All characters can be repeated
b> e ® ° e~ ~¢ 4. <b>can be skipped except when
e e ° ° o o it is inserted between repeated
character
> e >~ o o « s”,"<b>", "e”: we can skip
oo
S ® [ ® ® ®
“e”, "<b>", "e”: we cannot
<b> e o © © © skip <b>



Trellis of z

<b> e © © © ©

1. Must start at the first <b>or s
e P PY PY PY PY 2. Must end at the last <b> or e
3. All characters can be repeated
<b> e © ® ® ® 4. <b> can be skipped except when
e o o o o o it is inserted between repeated
character
<b> ® ® ® ® ® o ”S”, ”<b>”, nen: we can Sk|p
<b>
S o o o [ ®
uen’ ”<b>”, nen: we cannot
<b> e © © © © skip <b>



Trellis of z

=W e

Must start at the first <b> or s
Must end at the last <b>or e
All characters can be repeated
<b> can be skipped except when
it is inserted between repeated
character
“s”, "<b>", "e”: we can skip
<b>
“e” "<b>" "e”: we cannot
skip <b>



<b>

Trellis of z

=W e

Must start at the first <b> or s
Must end at the last <b>or e
All characters can be repeated
<b> can be skipped except when
it is inserted between repeated
character
“s”, "<b>", "e”: we can skip
<b>
“e” "<b>" "e”: we cannot
skip <b>



<b>

Trellis of z

=W e

Must start at the first <b> or s
Must end at the last <b>or e
All characters can be repeated
<b> can be skipped except when
it is inserted between repeated
character
“s”, "<b>", "e”: we can skip
<b>
“e” "<b>" "e”: we cannot
skip <b>



<b>

<b>

<b>

<b>




How to represent it as an actual function?

 We define an alignment variableas z=(z, e 7 u<b>|r=1,...T)
© |z[=[o]=T
« The vocabulary set is augmented by the blank symbol <b>

« We incorporate this random variable to p(w |0) as follows:

p(Wl0)=">_  p(Z|0)

zZef-1(w)

= Y |IrGlzee=r,0)

Zef-1 (W) t=1

* s~law): all possible z representing w

* Use a chain rule to further factorize z
Perform conditional independence
assumptions and ignore the

T
= Y []rzl0) dependency of previous alignments
Zef-t(w)t=1

z,,_, (this is an approximation)

* p(z0) is represented by a neural network (§idi>/evc%onnea?g1tlel %QIS\éﬁ-Engn%%mmuzatlon
over all possible paths )

V4

< Exponential



Agenda

e Alignment paths

e RNN-Transducer



Speech recognition pipeline /]\

p(O| W)

“I want to go to

the campus”
Feature RNN Transducer g
extraction

94



Alignment path in the RNN-transdu

« Alternative alignment paths
* W=, ... w): J-length label sequence
* 0=(o, ..., op): T-length input sequence

« Similar to CTC, consider all possible paths in the right-
side trellis

o Start: left bottom corner, i.e., <s> (start of sentence)
atr=1

e End: top right corner

o “: output token (it does not consume the input
frame, unlike CTC)!

>0 >0 9

~
|
[\V)

e e

~
|
w

>4 >0 o

I
S



Alignment path in the RNN-transducgr

« Alternative alignment paths

* W=, ... w): J-length label sequence
* 0=(o, ..., op): T-length input sequence e ’ - )2 - )2 - )2 - )2
%7 %7 0D %7
« Similar to CTC, consider all possible paths in the right-
side trellis - . . .
« Start: left bottom corner, i.e., <s> (start of sentence) © 2 < )’ * )2 < )’ < >’
atr=1
e End: top right corner s ~ = ~ ~
o “: output token (it does not consume the input ’ ol >’ a >’ a >2 o )’
frame, unlike CTC)!
>@ >@ >@ >®

(\N
\N
\M
\N

e —:no output (o) <S®

~
|
~
I
N
~
|
w
~
I
S
~
I
(@)



Alignment path in the RNN-transducer

« Alternative alignment paths
* W=, ... w): J-length label sequence
* 0=(o, ..., op): T-length input sequence
« Similar to CTC, consider all possible paths in the right-

side trellis

o Start: left bottom corner, i.e., <s> (start of sentence)
atr=1

e End: top right corner

o “: output token (it does not consume the input
frame, unlike CTC)!

e —:no output (o)
* f_lzw=(lsll le'l ,e’) 9 Z=(®I IS'I QI ®I le’l le’l ®I Q)I (IS’I
2, e, 2,0 0 ¢, o)etc.ifr=5and s=3
e f:Z - Wwisamany to one mapping (we can just
remove g
e Consider all possible paths including the case that it
allows the output of the token w

>0 >0 9

e e

>4 >0 o

~
|
[\V)

~
|
w

I
S



Alignment path in the RNN-transduc

« Alternative alignment paths
* W=, ... w): J-length label sequence
* 0=(o, ..., op): T-length input sequence
« Similar to CTC, consider all possible paths in the right-

side trellis

o Start: left bottom corner, i.e., <s> (start of sentence)
atr=1

e End: top right corner

o “: output token (it does not consume the input
frame, unlike CTC)!

e —:no output (o)
* f_lzw=(lsll le'l ,e’) 9 Z=(®I IS'I QI ®I le’l le’l ®I Q)I (IS’I
2, e, 2,0 0 ¢, o)etc.ifr=5and s=3
e f:Z - Wwisamany to one mapping (we can just
remove g
e Consider all possible paths including the case that it
allows the output of the token w

>0 >0 9

e e

>4 >0 o

~
|
[\V)

~
|
w

I
S



How to represent it as an actual function?

* We define an alignment variableas z=(z, e 7 u gk =1,..,T+ J) ° g g > > >
* Vocabulary set is augmented by the blank symbol @ > > > >
* Notethat |z| =T+J,notT > > > S
« We can introduce the following equations > > > >
. el : :
pWio)= S p(Z/0) f~'ow): all possible z representing w
ZefTHW) e Use a chain rule to further factorize z
T+J
= Y ][ p(zklz1:6-1,0) *  f(z,.,, represents the partial token
Zef-Y(W) k=1

T4 sequence uptok-1

- Z H p(zk|f(21:6-1), O)

Zef~Y (W) k=1



How to represent it as an actual functiop:

* We define an alignment variableas z=(z, e 7 u gk =1,..,T+ J)
* Vocabulary set is augmented by the blank symbol &
* Notethat |z|=T+J,notT

« We can introduce the following equations

p(W]0O) =

¢ P(Zk|f(zl:k—1)’

Tl* b4 b4 b4 b4
*—>0—>0——0

IT b4 b4 b4 b4
*—>0—>0——0

S p(2|0)  f'aw): all possible z representmg Vlz
ZefTHW) e Use a chain rule to further factorize Z
T+J
= > I »Cerl21-1,0) *  f(z,._p represents the partial token
Zef-1 (W) k=1
- sequence up to k — 1

= > ]I pCzlf(z1:-1), 0) « We need to solve the summuzation
Zef-t (W) k=1

over all possible paths )

V4

0) is represented by a special neural net@erkparidrasisihe information of both r and



Example of z in CTC

o n o n u )

e w=("s","“e" “e”), T=5

Then

Z = (“<b>”,“s”, “e”, “<b>", “e”), Or
Z=("s", “<b>" “e” “<b>" “e”), or

PRV NN Il<b n o n

Z=(S, s, e, >7 “e™), or

This is an alignment problem

~ “see” (only5 ’r!a es

<b> s e <b> e

or
S S e

<b> e



Example of z in RNN-trans.

~ “see” (only 5'franes)

° W: (IIS”’ Ile”’ Ile”)’ T — 5

Then
S , =
Z=(9,s,0,0,¢,¢,0,d), Or
Z=(9,0,¢,0,0,0,¢,0),0r
. : %) %) %) %] %)
This is an alignment problem
or
S e e




CTC vs. RNN-T /]\

e CTC e RNN-transducer

e > > >

e > > >

S > > >

<s> > > >
t=1 t=3 t=4 t=5

1 @2 &3 ¢4 &5



Agenda

e Alignment paths

« HMM (3-state left-to-right)



Speech recognition pipeline

G OW T UW
G OW)Z T UW “I want to go to

) the CMU campus”
Acoustic Lexi Language >
: exicon :
modeling modeling

Feature
extraction

“go to”
“go two”
“gO t00”
“goes to”
“goes two”

p(L[1eges V)




Introduction of HMM states

« Two differences
 Phoneme sequence L instead of word sequence w
* p|L) instead of p(L|0) or p(w |0) due to the Bayes theorem

1. Decompose the word sequence to the phoneme sequence by using a pronunciation dictionary

“one,” “two” = /W/, /AH/, IN/, [T/, JUW/

2. Introduce the silence related symbols
« Silence begin (/SilB/): placed in the beginning of the sentence
« Silence end (/SilE/): placed in the end of the sentence
« Short pause (/SP/): placed between the words (can be skipped)

/W/, [AH/, IN/, [T/, [UW/ = /SilB/, /W/, /AH/, N/, [SP/, [T/, [UW/, /SilE/
3. Expand each phoneme with three states

/SilB/, /W/, /AH/, IN/, /SP/, [T/, /JUW/, /SIIE/
- /SilB/,, /SilB/,, /SilB/, ..., [T/, [T/, [T/5, /UW/,, JUW/,, /JUW/,, ...

« This structure is widely used, but there are some variants (e.g., short pause can be one state)



HMM-based

T
(Classical) SIE

+

RNN- Attention-
transducer based




Use phoneme Do NOT use phoneme

HMM-based
(Classical)

CTC

'
RNN- Attention-

transducer based




Trellis to find all possible paths /\\

e Left-to-right HMM without skip g)'* %8’,8
e Each state must have at least one frame

« Example, 3 state left-to-right HMM (/UW,/, /JUW,/, /
UW,;/) S = (s € {/UW,/, /UW,/, /UW,/}t = 1,2,3,4,5) quences



Trellis to find all possible paths /]\

=1 =2 =3 =4 I =)

o It must start at the initial state (/UW,/)
It must end at the final state (/UW,/)



Trellis to find all possible paths /]\

e Red arrows cannot reach the final state

t=1 t=2 t=3 t=4 t=95




Trellis to find all possible paths /]\

e If we have some skips...

22T




Trellis to find all possible paths /]\

o If we have some skips...

D FZT.




Variant of HMMs

e Left to right
« We mainly use this 8.> %)}-» 8
Q0
()

o Left to right with skip (\r
« 2nd order in this example @

e Ergodic (fully (\' O O

connected) QY Y~YNn

e No specific order
anymore...



Phoneme sequence /]\

e We just connect the HMMs for each phoneme

0-0-6-0-6-8



Let’s check three distributions

e CTC e RNN transducer

p(W|0)= > p(Z|0) pW0)= Y p(Z|0)
Zef-1(W) Zef-1(W)
T T+J
= Y IIrzlzue=r.0) = Z szklzlk )
Zef-1 (W) t=1 Zef-
T T+J
= Z Hp(2t|0) = Z Hp 2kl f(z1:6-1), O)

Zef-1 (W) t=1 Zef~t

« HMM

p(W]0) Zp O[L)p(LIW)p(W)

Which part is similar?

_ ZZ (O, S|L)p(LIW)p(W)
L S

T

=> ) plor]s1, L)p(s1|L) [ [ (oslse, L)p(si|se—1, L)p(LIW )p(W)
L S

t=2




Let’s check three distributions

e CTC e RNN transducer

p(W|0)= > p(Z|0) pW0)= > p(Z|0)
Zef-1(W) Zef-1(W)
T T+J
= Y IIrzlzue=r.0) = Z szklzlk )
Zef-1 (W) t=1 Zef-
T T+J
= Z Hp(2t|0) = Z Hp 2kl f(z1:6-1), O)

Zef-1 (W) t=1 Zef~t

« HMM

p(W]0) Zp O|L)p(L|W)p(W) Which part is similar?
=ZZ (0, SIL)p(L{W (W) = Allarebasedon ) []ro

ZorS t

T

=35 plouls1, L)p(s11L) [ (0elses L)p(silse—1, L)p(LIW)p(W) - We can compute them based
L S t=2 . .
on the dynamic programming




Summary

e CTC, RNN-transducer, and HMM are represented by a similar
function form, i.e., Z Hf(t)

ZorS t
 All possible alighnments are constrained by each method

« The most difficult issue in speech recognition: the input and output
lengths are different

« We need some alignments

e The soft alignment case
« We use an attention-based neural network (this will be introduced later).

e The hard alignment cases

* We explicitly introduce an alignment path z.
o We can use it for CTC, RNN-transducer, and HMM-based approach



