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Recap:Speech Representations
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The result of the vocal articulation is an acoustic pressure wave

Speech can thus be represented as an acoustic waveform

Waveforms are continuous time series cannot be easily
analyzed or interpreted, or computed with

Signal processing can give more interpretable information



Speech Production
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Vocal articulators that
produce speech
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Air passing through vocal
articulators produces speech

Vocal folds, tongue, jaw, lips,
velum are both independently and
jointly controlled to produce
different sounds

* eg. Vocal fold vibration causes
voicing.

The output of vocal articulation is
an acoustic pressure wave



The most complex action we do is speaki

Sound filter

Where were you  while we were away
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speechWaM
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Speech Waveform
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SpeechSpeM
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Speec:hSmM
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Phonetics

Study of speech sounds — their physical production, spectral and
perceptual properties
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Acoustic Phonetics 4%

Sbe just ihad a babyi

amplitude

she just had a baby

sh iy j ax s h ae dx| ax b ey b iy

0 1.059
Time (s

o Spectrogram reveals some segmenztal structure with distinct properties

o These are Phonemes — perceptually distinct speech sounds



Acoustic Phonetics

Sbe just ihad a babyi

amplitude

j she

just had a baby
sh iy j ax s h ae dx| ax b ey b iy
° Phonetic transcription 1059

Time (s

o Spectrogram reveals some segmer(ﬁal structure with distinct properties

o These are phonemes — perceptually distinct speech sounds
But, Speech is not just the phonemes This is a short example



Coarticulation: speech is not segmental or lin ﬁ
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Co-articulation: An elegant phonological-articulatory
transformation to facilitate rapid communication
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Coarticulation = Bad for pattern matchinm
11
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International Phonetic Alphabet (IPA)(i!

> Phoneticians compiled a common
set of sounds used to codify different
speech sounds (across languages

> English spelling is not phonetic
o It has about 40 distinct phonemes
represented by 26 graphemes
o About 16 vowel sounds
o About 24 consonant sounds

GHOTI

GH a5 in ROUGH Oasin WOMEN TIasin MOTION

THE INTERNATIONAL PHONETIC ALPHABET (revised to 2020)

CONSONANTS (PULMONIC)

@®© 2020 IPA

Bilabial |Labiodental| Dental ‘Alveolar’Postalveolar Retroflex | Palatal | Velar | Uvular |Pharyngeal| Glottal
Plosive p b t d tdlcy kglgqe | [?
Nasal m 1) n I, n ) N
Trill B T R
Tap or Flap v r T
rave |G B f v 03 sz [ 3 sz ¢j xy xs hehi
fateral it B
Approximant v I I J . q
kg;ﬁ{;;(limant 1 l, /{ L

Symbols to the right in a cell are voiced, to the left are voiceless. Shaded areas denote articulations judged impossible.

CONSONANTS (NON-PULMONIC) VOWELS
Clicks Voiced implosives Ejectives !-‘rom (:cmral Back
Close ley etk Weu
O Bilabial 6 Bilabial Examples: \
, LTY U
| Dental d' Dental/alveolar p Bilabial \
| y Close-mid eed 9e0O Y eO
! (Post)alveolar f Palatal t Dental/alveolar "u,‘
+ Palatoalveolar g1 Velar k, Velar A 9
. \ \
H Alveolar lateral d Uvular S’ Alveolar fricative Open-mid € .(E 3 '8 AeO
\\ \
2\ e
OTHER SYMBOLS \ L“‘-‘
Open aeE ———deD

M\ Voiceless labial-velar fricative
‘W Voiced labial-velar approximant

[,I Voiced labial-palatal approximant 6

Q Z Alveolo-palatal fricatives
.I Voiced alveolar lateral flap

Simultaneous ‘r and X

H Voiceless epiglottal fricative

Affricates and double articulations

Where symbols appear in pairs, the one
to the right represents a rounded vowel.

SUPRASEGMENTALS

g Voiced epiglottal fricative can be represented by two symbols @ kp |
joined by a tie bar if necessary. N
? Epiglottal plosive N
v
DIACRITICS ~
Voiceless n d Breathy voiced b a Dental t d |
[ ° . - - A A
Voiced S t Creaky voiced b a Apical t d | |
~ ~ ~ ~ ~ ~ o g
h Aspirated th dh Linguolabial t d Laminal t d
~ ~ ~ [=] o o .
More rounded o) W' Labialized tw d "~ Nasalized é
> 5 -
Less rounded D J Palatalized t-] dJ I Nasal release dn
< C
Advanced u Y Velarized tY dY 1 Lateral release (:1l
+ 0
a A A4
Retracted e Pharyngealized t‘" d? No audible release d (§]
— — I
Centralized e ~ Velarized or pharyngealized ‘l‘ €
= = - e
Mid-centralized € Raised € (J = voiced alveolar fricative)
oL al i é
Syllabic n Lowered e (B = voiced bilabial approximant) "
! i T T od e
Non-syllabic e Advanced Tongue Root € d
~ ~ - =
“ Rhoticity v av Retracted Tongue Root € T
= F

=]

Some diacritics may be placed above a symbol with a descender, e.g. 1:]

Primary stress 1
[founa tifon

Secondary stress

Long el
Half-long e
Extra-short e

Minor (foot) group
Major (intonation) group
Syllable break a.zekt

Linking (absence of a break)

TONES AND WORD ACCENTS

LEVEL CONTOUR
or -| ll;_l)‘gt}:a é or A Rising
1 High é \l Falling

. - High

'I Mid (§] /] risigng

= Low

-I Low e rising
Extra w Rising-

_] low c ’\1 falling

/‘ Global rise
N\ Global fall

Downstep

Upstep



International Phonetic Alphabet (IPA)(!

> Vowels are characterized by jaw position and tongue shape

o Some vowels also use lips (eg. sound uw in cool)

Jaw aperture

VOWELS

Close

Close-mid

Open-mid

Open

Tongue frontness

Front (..‘cntral Back
le y Telt WelU
é{@ 9}9——Xco
8-08 —3 o B——AeD

AsE QoD

Where symbols appear in pairs, the one
to the right represents a rounded vowel.

tongue@ palate

beet [iy] bat [ae]

closed
velum

boot [uw]



International Phonetic Alphabet (IPA)(!

o Consonants are characterized by place and manner of articulation

(nasal tract)

o /p/is caused by constriction at lips (labial)

o Ip/ is caused by sudden release of air (plosive)dena A&
bilabial P

Place of articulation A
CONSONANTS (PULMONIC) @®® 2020 IPA
- Bilabial Labiodental, Dental | Alveolar |Postalveolar| Retroflex | Palatal Velar Uwvular | Pharyngeal | Glottal
O
-IC_U' Plosive P b t d t (i C j k g qaG ?
3 Nasal m rIJ n n, ﬁ IJ N
O .
= | Trill B r R
—
(O |Tap or Flap \A r U
Y .
O |Fricative (I) B f vV 9 6 I S Z‘ JI 3 S 4/ C J] XY AU B h T h ﬁ
= Lateral ' ‘].’ ‘ ’ '
GC) fricative . 13 .
(- Approximant v I ‘I, J [I{
© ateral | ‘ [
2 %S}t)?g;(imant 1 l, 1{ L

Symbols to the right in a cell are voiced, to the left are voiceless. Shaded areas denote articulations judged impossible.



What is phone and phoneme???
GO TO: “gootu” or “GOW T UW”

« Phone:goutu
« Devised by International Phonetic Association
« Physical categorization of speech sound
« Not applicable to all languages, needs special characters, too many variations

« Phoneme: one of the units that distinguish one word from another in a
particular language

e /r/ and /I/ are degenerated in some languages (e.g., “rice” and “lice” sounds same for
me!). Then, we don’t have to distinguish them.

 ARPAbet:G OW T UW

« Proposed by ARPA for the development of speech recognition of only “American English”
« Represented by ASCII characters



Pronunciation dictionary

« CMU dictionary
« http://www.speech.cs.cmu.edu/cgi-bin/cmudict

”l want to go to campus”
> AYWAANTTUWGOWTUWKAEMPAHS

o Powerful, but limited
« Out of vocabulary issue, especially new word

—> Grapheme2Phoneme mapping based on machine learning



From letters to sounds 4%

o Pronunciation dictionaries (often made by linguists) give the
syllables and phonemes within each word in vocabulary

» CMU Phonetic Dictionary gives the syllabic and phonetic
spellings for >110K words in English

> ML based phonetizers are built on such phonetic dictionaries

Graphemes She just had a baby

IPA Jii  d3ast heed o 'beibi
Arpabet shiyjhrahsthaedahb eybiy

Arpabet is an ASCII friendly representation of IPA



Phonology

- Phonology are the grammatical rules that phonemes of a language follow
Lexical Phonology: Study of rules that govern the organization of sounds in a
language ( Phonemes —> Syllables —> Words)

o Lexical Stress (project (noun) vs project (verb))

> Allophones
o (rand lin Japanese; p and b in Arabic; t and k in Hawaiian)

> Phonological changes in continuous speech
> Westside vs Westend

- Intonational Phonology: Study of the Fundamental Frequency (FO) in
relation to the intended meaning of an utterance

o I never said she stole my money (Emphasize each word for different meanings)



Lexical Phonology mm

> Phonology is the study of rules that govern the organization of
sounds in a language ( Phonemes —> Syllables —> Words)

- Syllabic constituency o (denotes a syllable)

Onset Rh me

A\

| Nucleus Coda
> How is “had a baby” composed?

o 9 o /6\
Onset Rhyme Onset Onset Rhyme Onset Rh‘y me
Nucleus Coda Nul:leus Nucleus

hh ae d ah b ey b ly



Speech in the Wild

> Audio is neither clean nor just restricted to spoken language

> What technologies fall under spoken language research ?

e Speech recognition e Speech enhancement

e Speech synthesis e Microphone array processing

 Voice conversion « Audio event classification and
detection

e Speaker recognition

« Language recognition » Speech separation

. Speech emotion recognition e Spoken language understanding

. Speaker diarization e Spoken dialogue systems

. Speech coding  Speech translation

. Speech perception e Multimodal processing



Speech in the Wild

> Audio is neither clean nor just restricted to spoken language

> What technologies fall under spoken language research ?

e Speech recognition e Speech enhancement

e Speech synthesis e Microphone array processing

 Voice conversion « Audio event classification and
detection

e Speaker recognition

« Language recognition » Speech separation

» Speech emotion recognition » Spoken language understanding

. Speaker diarization « Spoken dialogue systems

« Speech coding  Speech translation

. Speech perception e Multimodal processing



Speech Recognition 4%

aka
ASR: Automatic Speech Recognition




Speech Perception: Transforming Sound to Meaning 4%

Have you got enough blankets? meaning
word
hivy gar |1f |Af |bleen kits syllable
hivygari+afblaenkits phoneme

i 3l
! | !i | spectrotemporal

& ' i | ) (frequency decompesition)
—MM‘——— acoustic vibration



» Sounds reach the ear

» Sound pressure wave vibrates
tympanic membrane

» Vibration converted to electrical
signal

> sent to auditory nerve, brain
stem, thalamus, cerebral cortex

4Oy "‘IL' "Jl'
Cochlear ) “ / |
nucleus

Superior

Pons Cochlea
2';}';’35 Brainstem

© 2001 Sinaver Assoclates, Inc.




Anatomy Proposed Computation

Cochlea Frequency decomposition of sounds (FFT)

Brain stem Sound localization (azimuth and elevation)

Acoustic to phonetic transformation, meaning of words

Cerebral cortex , , - , :: ;
(semantics), higher cognitive functions (decision making)




Malleus

Incus Stapes (attached to

oval window)

Vestibule

Auricle :
Vestibular nerve

Cochlear nerve
Round window

Ear canal
Cochlea

. . Eustachian tube
Tympanic Tympanic

membrane cavity

| || ]l |
I | |

External ear Middle ear Inner ear

Image credit: OpenStax CC-BY-4.0 - Access for free at https://openstax.org/books/biology-2e/pages/ | -introduction - |



Tectorial

Schematic of expanded cochlea membrane

e |  Oval window base | ( “

- A

Basilar
membrane

Round window

oo | M| eV

20,000 Hz 1500 Hz 20 Hz
(high frequency)  (medium frequency)  (low frequency)
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Important parameters of sound waveg, .

> Frequency: # of waves Time
that pass any point in

one second. Measured
in cycles/sec (Hz)
> subjective correlate: high low

pitch frequency frequency

> Intensity/amplitude:
Magnitude of the

movements produced
(measured in dB)

high intensity

> subjective correlate:

loudness . .
low intensity

30



Perception of Sound /‘\

Physical Quantity Perceptual Quality

Intensity Loudness

Fundamental frequency (1) Pitch

Spectral envelope (formants) Timbre

Onset/offset time Timing

Phase difference in the two ears Location

31



Perception of Sound

One divergence between perceptual and physical properties is the non-
uniform equal loudness contours. The ears are most sensitive to sounds
with a frequency of 3 ~ 4 kHz.

100 100 phon
80 80
60 \\ 60 /)
.0 40 f |
equal o, : 20
loudness
contours
(dB)

20 50 100200Hz 500 1 2kHz 5 10 20

32



Mel scale: A Logarithmic filter bank for Percep?%
11
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Speech is a small part of all possible soun
11

» Sounds can be decomposed into spectral and 3 :
. § )

temporal modulations = s

- @

® g

» Natural stimuli (including speech) can be made up g E
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Elliott & Theunissen PLoS Computational Biology 2011
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Speech Recognition

e | arge Vocabulary Continuous Speech Recognition (LVCSR)
e ~64,000 words
e Speaker independent (vs. speaker-dependent)
e Continuous speech (vs isolated-word)

English Tasks WER%
LibriSpeech audiobooks 960hour clean 1.4
LibriSpeech audiobooks 960hour other 2.6
Switchboard telephone conversations between strangers 5.8
CALLHOME (elephone conversations between family 11.0
Sociolinguistic interviews, CORAAL (AAVE) 27.0
CHiMe5 dinner parties with body-worn microphanes 47.9
CHiMeS dinner partics with distant microphones 81.3
Chinese (Mandarin) Tasks CERY%
AISHELL-1 Mandarin read speech corpus 6.7
HKUST Mandarin Chinese telephone conversations 23.5

1000 Y8y Rough Word Error Rates (WER = % of words misrecognized) reported around
2020 for ASR on various American English recognition tasks, and character error rates (CER)
for two Chinese recognition tasks.



Conversational Speech /]\

e Utterance without Context

o \With context



HSR versus ASR

Deletions Insertions
SWRB CH SWB CH

ASR [luman | ASR [luman || ASR [Tuman ASR [luman
30: 1t 19: 1 16: 1 20: 1 13:1 16: 1s 23: a 17: 18
20: 1 17: 1L 46: 11 18: and 10: a 14: %hes | 14: 1s 17: 1L
17: that 16: and @ 39: and 15: it 7: and 12: 1 11:1 16: and
16: a 14: that | 32:is 15: the 7 of 11: and 10: are 14: have
14: and 14: you | 26: oh 14: is 6:you | O:it 10: you | 13: &
14: oh 12: is 25 a 13: not 5: do 6: do Q: the 13: that
14: you 12: the | 20:to 10: a 5: the 5: have 8:have | 12:1

12: %bcack | 11:a 19: that 10: in 5: yeah | 5: yeah 8: that 11: 9hes
12: the 10: of 19: the 10: that || 4: air 5: you 7: and 10: not
I1:to 9: have 18: Ypbcack | 10: to 4:1n 4: are 7t 9: oh

Table 3: Most frequent deletion and insertion errors for humans

and ASR system on SWB and CH.

SWB CH
ASR Human ASR Human
11: and/in 16: (%hes) / oh 21: was/is 28: (%hes) / oh
O: was /is 12: was/ is 16: him /them  22: was/is
7: 1t / that T: (1-) / %hes 15:1in/and 11: (%hes) / %ebeack
6: (%hes) / oh 5: (%hes)/a 8: a/lthe 10: bentsy / benji
6: him / them 5: (%hes) /hmm | 8: and / in 10: yeah / yep
6: too/to 5: (a-) / %hes 8: 1s / was 9: a/the
S: (%hes) / i 5: could / can 8: two/to 8. is / was
S: then / and 5: that /1t 7. the/a 7. (%hes) / a
4: (%hes) / %becack | 4: %becack / oh 7 too / to 7: the / a
4: (%hes) / am 4: and/ in 6: (%hes) / a 7: well / oh

Table 2: Most frequent substitution errors for humans and ASR
system on SWB and CII.

(Saon.etal . 2017)




Why Study ASR ?

¢ |[n the last ~5 years
e Dramatic reduction in LVCSR error rates (16% to <3%)
e Human level LVCSR performance on Switchboard
e New class of recognizers (end to end neural network)

e Understanding how ASR works enables better ASR-enabled systems
e What types of errors are easy to correct?
e How can a downstream system make use of uncertain outputs?
e How much would building our own improve on an API?

e Next generation of ASR challenges as systems go live on phones and in homes



Why Study ASR ?

With speech, interaction
becomes independent
of screen estate

Typing Speeds

o

50 100 150 <00 250 300

Words per-minute

W Average User  MExperienced User

If accurately recognized,

speech is three times

faster than QWERTY
(Basapur et al. '07)

Only plausible
interaction modaility
for 800 million non-
literate users



Design of Classical ASR Systems

e Build a statistical model of the speech-to-words process
e Collect lots and lots of speech, and transcribe all the words.
¢ Train the model on the labeled speech

e Paradigm: Supervised Machine Learning + Search



Current ASR Systems /]\

v Adult Native English Speakers

v Clean Lab Environment

/ X Children

/,. X Non-native Accent

X Noisy Environment
. X Variable Speaking Rate

No “universa
developed and optimized for each use case

speech recognizer — one must be



Why is ASR Hard ? /%
11

written text:
spontaneous:
continuous:

pronunciation:

acoustic
variability:

noise:

Cocktalil party-

Effect:

Why is speech Recognition so Difficult?
why's speech recognition so difficult
whysspeechrecognitionsodifficult
whazbeechregnizhnsadifcld

Z/fzazfmﬁneq Mz}vnbao[H:L




What are the factors that determine difficulty 7

COMPLEXITY
amount of data: typically 32000 bytes per second (16khz)
class inventory: 50 phonemes, 5000 sounds, 100.000 words

combinatorial explosion: exponential growth of possible sentences

SEGMENTATION

our perception: Phones, syllables, words, sentences

actually there are: no boundary markers, continuous flow of samples
VARIABILITY

speaker: anatomy of vocal tract, speed, loudness, acoustic

stress, mood, dialect, speaking style, context
channel, environment: noise, microphones, channel conditions

AMBIGUITY

Homophones: two vs. too,

Word Boundaries: interface vs. in her face,

Semantics: He saw the Grand Canyon flying to New York,

Pragmatics: Time flies like an arrow.



Why is HSR easy 7

“The main prerequisite of the uniquely human communication is that speaker and
listener must have a common understanding that out of all possible sounds

man can produce and hear, only a few have linguistic significance.”
(Olli Aaltonen& Esa Uusipaikka: Why Speaking Is so Easy? — Because Talking Is Like Walking with a Mouth)

* Important feature of speech perception: we hear sounds either as speech or
non-speech

* Once defined as speech, we hear a sequence of vowels and consonants not
as buzzes and hisses, the segmentation into words happens on the fly

= Abstract away from sound variability - we use an enormous database of
background knowledge: phonotactics, morphology, syntax, semantics,
pragmatic knowledge



Robustness of HSR

“The main prerequisite of the uniquely human communication is that speaker and
listener must have a common understanding that out of all possible sounds

man can produce and hear, only a few have linguistic significance.”
(Olli Aaltonen& Esa Uusipaikka: Why Speaking Is so Easy? — Because Talking Is Like Walking with a Mouth)

* Important feature of speech perception: we hear sounds either as speech or
non-speech

* Once defined as speech, we hear a sequence of vowels and consonants not
as buzzes and hisses, the segmentation into words happens on the fly

= Abstract away from sound variability - we use an enormous database of
background knowledge: phonotactics, morphology, syntax, semantics,
pragmatic knowledge

We also use multiple modalities - McGurk effect



Problems and Challenges
11

=  Speech Recognition (“speech-to-text”)
= Finding Robust Acoustic Representations of Speech (how do things sound)
* Dictionary Learning (how to decompose words into units)
= Language Modeling (what is likely to be said)

= Decoding (how to get an answer in finite time)

= Adaptation and robustness of models and techniques to changing conditions
= Multi-modal and multi-task learning, audio-visual processing (deep learning)

= Language-universal (7) modeling

= Can we port resources across languages, to enable processing of new, unwritten,
low-resource languages?

* How do Humans do it? Language acquisition?



Problems and Challenges

= Meta-data extraction (what is ,not in text®)

= Speaker identification (age, gender, ...)
= Emotions, personalities, ...
= Languages, dialects, ...
*  Optimality Criterion?
» Speech-to-text useful? No, unless dictation
* Optimize directly “speech-to-meaning” or “speech-to-action”
= All neural architectures
* Jointly optimized speech-to-X systems

» Speech synthesis



Template Matching




e Some applications only have limited vocabulary — Voice Dialing System

e Library
— Mom
— Dad
— Bob

— Mano’s Pizza

1 1] “ £ (4] ar . ”.l ﬂ‘.
1002 -
"
Axk ’Hulm

° o el LT 04 I At a7

U 2

3 04 05 06 0T 08 03 1 L} N 3




* We change durations
* two utterances are never the same

Dynamic Time Warping

Template

|
Ss|P|E|E|C|H

S|s|P|E|E|h|H
1 I n
Time —=

Sample Speech




Dynamic Time Warping /%
11

Template | EH
i- 1

1)

Sample

¢ For each square
o Dist(templateli],samplefj]) +
smallest_of (Dist(template[i-1],samplelj])
Dist(templateli],samplelj-1])
Dist(template[i-1],.sample[j-1])
Remember which choice your took (count path)



Dynamic Time Warping Paths

Many different warping ltakura weighted
steps are possible and

have been used.

Examples:

General rule is: symmetric
Cumulative cost of (editing distance) cakls
destination = best-of

(cumulative cost of source

+ cost of step + distance in

=Y
T

destination)



Dynamic Time Warping Path Constraint
Endpoint constraints: we want the
path to not skip a part at the m
beginning ar end of the utterance
Monotonicity conditions: we can't go
back in time (for any utterance)
Global path constraints: path
Local continuity: should be close to diagonal
no jumps etc
Slope weighting: we believe the DTW
path sjould be somewhat ,smooth”




Dynamic Time Warping Path Constraint

77
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DTW Search Space

Already suggested: restrict search space
by window around diagonal. Caveats:

= Silence period in one utterance can
cause "edgy" path

= Search area becomes too restricted
when utterance durations differ a lot

Other reason (besides global path
constraints) for restricting search space:

= Save time: A window that has a
constant width, reduces the search
effort from O(n?) to O(n)

= To overcome caveats of "diagonal
window" restriction, use: beam
search.



DTW with Beam Search

ldea: do not consider steps to be possible out of states that have “too high”
cumulative distances.

visited states

states with low

R \;;;- @@@@@! cumulative distance
{.\ s NS
T O
g S - cumulative distance
@@ L .
ST nored s

Approaches:

= “expand” only a fixed number of states per column of DTW matrix

= expand only states that have a cumulative distance less than a factor (the
“‘beam”) times the best distance so far



DTW and Multiple Templates

¢ Compare against each
¢ Find closest

¢ Need to normalize scores
« (divide by length of matches)

Template [ibrary

S amplc Wordo
] Word:
Word2

For Word in Templates
Score = dtw(Template[ Word], Sample);
if (Score < BestScore)
BestWord = Word;
DoAction(Action|BestWord])




Also adapted for Speaker ID

¢ Compare against each
¢ Find closest

¢ Need to normalize scores
« (divide by length of matches)

Template [.ibrary

Sample Speaker0
- Speakerl
Speaker2

For Spcaker in Templates
Score = diw(Template[Speaker], Sample);
if (Score < BestScore)
BestSpeaker = Speaker;




Template Matching /‘\

¢ Advantages
o Works well for small number of templates (<20)
o Language independent
o Speaker specific
e Easy to train (end user controls it)

¢ Disadvantages
o Limited number of templates
o Speaker specific
o Need actual training examples



Computing distances

e Distance metric

— Euclidean T
Z (Tz — Sz')z
\2—ll
* But some distances are bigger than others
— Silence 1s pretty similar

— Fricatives are quite larger

* A longer fricative might give large score

* A longer vowel might give smaller score



Isolated Word Recognition using Template Matching
11

= For each word in the vocabulary, store at least one reference pattern

=  When multiple reference patterns are available, either use all of them or
compute an average

= During recognition

= Record a spoken word

= Perform pattern matching with all stored patterns (or at least with those that can be
used in the current context)

= Compute a DTW score for every vocabulary word (when using multiple references,
compute one score out of many, e.g. average or max)

= Recognize the word with the best DTW score

= This approach works only for very small vocabularies and/ or for speaker-
dependent recognition

= Forms the basis of Hidden Markov Model based recognizers



I\/Iorereliabledistanw
11

e Instead of Euclidean distance

— Doesn’t care about the standard deviation

—
> (1; — S;)?

\i=0

e Use Mahalanobis distance

— Care about means and standard deviation




I\/Iorereliablemercdﬂng/\\

 Having multiple template examples
— Individual matches or

— Average them together

e DTW align all of the examples

e (Collect statistics as a Gaussian

— Mean and standard deviation for each coeff

{Ho, 00, 1,01, o, 00, ...}



Beyond Template Matching /R
11

¢ String phoneme templates together
o A template model for each phoneme

Phoneme Templates

Phone()
Phonel
Phone?2



Automatic speech recognition /]\

“I want to go to

campus”
ASR g
W A:W

E 3

i
¥




Automatic speech recognition

O W

“I want to go to

campus”
ASR g

Feature
extraction

T

— Instead of starting from the waveform, we will often start from speech
features (MFCC, etc.) through the feature extraction module

— Let’s think of the conversion from speech feature o to text w



Speech recognition with a probabilistic /‘\
formulation

« MAP decision theory: Estimate the most probable
word sequence among all possible word sequences
(I'll omit the domain sometimes) T

) 4%
W = argmax p(W|O)
wew



Speech recognition with a probabilistic /%
formulation i

- MAP decision theory: Estimate the most probable W
word sequence W among all possible word sequences
(I'll omit the domain sometimes)

A

W = argmax p(W|O)
wew

« The following parts will discuss how to make this equation

tractable
« To do that we need to prepare some basic math




Notation

Type Latex Looks like
command

Scalar variable Italic font, lower SxS

case
Vector variable Bold font, lower S\mathbf{x}S X
case
Matrix variable Bold font, upper S\mathbf{X}S X

Case



Notation

 Please specify the domain of variables
. D-dimensional continuous vector: o € RY
e (D x D)-dimensional matrix: 31 & RP*XD
« Word with vocabulary)) : ¢y €

 Set: calligraphic font, upper case, a set of elements are

represented with curly brackets
VYV ={"one”, "two”, "three”, - -}

e Sequence: italic font, upper case, a sequence of elements are
represented with round brackets

02(01,02,”') O:(OtERD|t:1,“',T)



e Subsequence

O — (017°°° 7Ot17‘0t1—|—17°" 7Ot2’7°" 7OT)




Speech recognition cases /]\

» T-length speech feature sequence (D-dimensional
vector)

O=(o, cR°t=1,....T)

* N-length word sequence with vocabulary vy
W= (w,eVn=1,...,N)



Notation cont’d m

e Operation: non-italic

Operation type

\log()
\arg \max (), \text{argmax}(), etc.

\text{sigmoid}()

e Index: subscript, italic
w

n

e Type of variables, functions: superscript, non-italic

X HMM’ X DNN

> Oy

pHMM(x), pDNN(X)



Probabilistic rules /‘\

e Product rule

p(zly)p(y) = p(z,y)

e Sum rule

p(y) => plz,y)

e Conditional independence assumption

p(zly,z) = p(z|z) p(2,y|2) = p(2|2)DP(Y|2)



Other rules /‘\

e Bayes rule

pylop(z) | plylo)p(@)
) == 0y = 5 p(yla)p(a)

e Probabilistic chain rule

N
P(ﬂfh'“ ,5171\7) — Hp(fﬁn\ﬂ?l:n—ﬂ where p(xl\ﬂhzo) Zp(il31)

n=1

« Both are derived with a combination of the product and/or sum rules



Other approximation

 Viterbi approximation

p(zly) = ) p(z, 2ly) ~ maxp(z, 2|y)

We often use this approximation to avoid )’

« Set an actual distribution, e.g.,

* p(x): Gaussian distribution, Gamma distribution, softmax probability
obtained by a neural network etc.



D

Now let us use product and sum rules
and conditional independence
assumption to formulate the speech
recognition problem



e End-to-End Speech Recognition



Speech recognition /‘\

AN

W = argmax p(W|O)
Wew w “I want to go to

campus”
Speech recognition g

-

Feature >
extraction

2
E
1

LITITTIIT] ¢




End-to-end speech recognition /]\

W = argmax p(W|O)
Wew W« want to go to

campus”
Neural network g

Feature
extraction
| .:w

. 1
*WWW ¥

aannnnan SR RS




How to obtain the posterior »w(o)

* We just replace it with a neural network-based function f(.)

argmax p(W10) = argmax f**(W|0)
W W

e Easy and simple, no math (in this level), however

* wis a sequence! W =(wn€Vin=1..,N)

« Very difficult to deal with it
* Say N =10, |7| = 100, we have to deal with 100" possible sequences

* Also, the length ~ is variable

e We have to use a special neural network (e.g., attention, CTC, and RNN-
transducer)



e Classical speech recognition




Speech recognition /N

AN

W = argmax p(W|O)
Wew w “I want to go to

campus”
Speech recognition g

-

Feature >
extraction

2
E
1

LITITTIIT] ¢




Classical (hon-end-to-end) speech /]\

recognition

W = argmax p(W|0O)

Wew “| want to go to

_ cam pus”
Feature Acoustic Language
: Lexicon
extraction modeling modeling




Speech =2 Text

Speech o:

Text W: | want to go to the campus

85



Speech =2 Phoneme = Text 4%

Speech o:

SR g

Phoneme L: AYWAANTTUWGOWTUWKAEMPAHS

=5k g

Text W: 1 want to go to campus

86



How to obtain the posterior »wo)

e Factorize the model with phoneme

*Let L— (e {/AA/, /AE/, - Yi=1,-- ) be a
phoneme sequence

— L S |
arg mme}xp(W]O) arg max zL:p(W, O0) um rule

— arg maxz p(O|W, L)p(LIW)p(W) Bayes+ Product rule
VT

p(0) |
lgnore p(0) as it
= argmax Z p(O|W, L)p(L|W )p(W) does not depend
L on w
= arg max Z p(O|L)p(L|W)p(W) Conditional
W L independence

_ — . . assumption_
Note: the right hand side is not the probability as it lacks a sum to one constraint



Noisy channel model /]\

argmaxp(W'| 0) = argmaxp(O | W)p(W) ~ argmax ) p(O| Lp(L|W)p(W)
L

e Speech recognition

* p(O|L): Acoustic model (Hidden Markov model)

e »(L|W): Lexicon

* p(W): Language model (n-gram)



Noisy channel model /]\

W: Target
language text
Y: Source language

argmaxp(W|Y) = argmaxp(Y‘ W)Hp(W)
W W text

« Machine translation
* p(¥|w): Translation model

* p(W): Language model

IIIIIIIIIIIIIIIIIIII

uuuuuuu



Speech recognition pipeline /]\

L

G ON T UW
GOWZTUW “I want to go to

_ campus”
Acoustic : Language >
: Lexicon i
modeling modeling

Feature
extraction

“go .to”

“go two”

“gO +00” W
“goes to”

“goes two”

“goes too” .

W = argmax p(W|O)
wew




Speech recognition pipeline /]\

GOW T UW
GOW ZT UW “
| want to go to
D_[ Feature ]~»[ Acoustic }»[ Lexi }»[ Language ]¥>campus
: exicon .
extraction modeling modeling
ol
e m : : : “go .to”
: : : “go tWO )
(mm “go t00” mg?aXE:pﬂﬂLnﬁLﬂVnﬁwﬂ
(0 “goes to”

“goes two”
“goes too”

p(O|L)  p(LIW) p(W)



Please remember the noisy channel mo?é]\

e Factorization

e Conditional independence (Markov) assumptions

We can elegantly factorize the speech recognition
problem with a tractable subproblem



Main blocks of Classical ASR /]\

“I want to go to

_ campus”
Feature Acoustic : Language >
) : Lexicon ]
extraction modeling modeling
it (b

AL




Speech recognition pipeline

Feature
extraction

{

GOWT UW
GOW ZTUWW

“I want to go to

Acoustic ]
i Lexicon
modeling I { I {

Language
modeling

] campus”
»

“go .to”
“90 two”
“go 'tOO”
“goes to”
“goes two”
g

“goes too”
g

p(O|L)  p(L|W)

p(W)



Waveform to speech feature

Lk s ALk
"W’WV‘W Featu_re >
extraction

» Performed by so-called feature extraction module

« Mel-frequency cepstral coefficient (MFCC), Perceptual Linear
Prediction (PLP) used for Gaussian mixture model (GMM)

e Log Mel filterbank used for deep neural network (DNN)

e Time scale
e 0.0625 milliseconds (16kHz) to 10 milliseconds

e Type of values
o Scalar (or discrete) to 12—40 dimensional vector

—




Speech recognition pipeline /‘\

GOWT UW
GOWZTUW “I want to go to

campus”
Feature Acoustlc Language >
Lexicon ]
extractlon modellng modeling
A

“go to”

“go two”
“90 t00”
“goes to”
“goes two”
“goes too”

p(O|L) p(LIW)  p(W)



Speech feature to phoneme

« Performed by so-called acoustic modeling module

1

Acoustic
modeling

},

G ONW T UW

e Hidden Markov model (HMM) with GMM as an emission probability function
« Hidden Markov model (HMM) with DNN as an emission probability function

e Time scale

e 10 milliseconds to ~100 milliseconds (depending on a phoneme)

e Type of values

« 12-dimensional continuous vector to 50 categorical value (~6bit)

« The most critical component to get the ASR performance

e It can be a proba

GOWT UW

nility of possible phoneme sequences, e.g.,

or

GOW Z T UW

with some scores




Acoustic model po| L)

O and L are different lengths

 Align speech features and
phoneme sequences by using

©- 8 > 8 - | ] or

UW, UW, UW;

* Provide p(0|L) based on this | * |
alignment and model uw, UW, Uw;

« The most important problem in
speech recognition



Speech recognition pipeline /‘\

GOWT UW
GOWZTUW “I want to go to

_ CMU campus”
Feature Acoustic : Language >
: Lexicon i
extraction modeling modeling
A A
b d

W “go to”
“go tWO”
“90 t00”
“goes to”
“goes two”
g

“goes too”
g

p(O|L) p(LIW)  p(W)




Phoneme to word

G OW T UW _{ Lexicon }’ “gO tO”

e Performed by lexicon module
o« American English: CMU dictionary

e Time scale

e 100 milliseconds (depending on a phoneme) to 1 second (depending on a
word and also language)

e Type of values
o 50 categorical value (~6bit) to 100K categorical value (~2Byte)

« We need a pronunciation dictionary

e It can be multiple word sequences (one to many)



Lexicon p(L| W) /]\

» Basically use a pronunciation dictionary, and map a
word to the corresponding phoneme sequence

« with the probability = 1.0 when single pronunciation

e with the probability = 1.0/J when multiple (J)
pronunciations

p(LIW) = p(/T/, /OW/|"two”) = 1.0



Speech recognition pipeline /‘\

GOWT UW
GOW Z T UW “
| want to go to
CMU campus”
D_[ Feature ]~»[ Acoustic }»[ : }» P
: Lexicon ]
extraction modeling modeling
":y el [k
n/mm “go to”
: : : “go tWO )
NN “go too”
0 “goes to”

“goes two”
“goes too”

p(O|L) p(LW)  p(W)



Word to text

“go 'tO”
¢ 9 » Language > “qo0 to”
go two {modeling} g

“go tOO”

* Performed by language modeling module p(w)
e N-gram
e Neural language model (recurrent neural network or transformer)

o From training data, we can basically find how possibly “to”,
“two”, and “too” will be appeared after “go”

e Part of WSJ training data, 37,416 utterances

e “goto”: 51 times
e “gotwo”:
o “gotoo”:

THE WALL STREET JOURNAL.



Word to text

“go 'tO”
¢ 9 » Language > “qo0 to”
go two {modeling} g

“90 too”

* Performed by language modeling module p(w)
e N-gram
e Neural language model (recurrent neural network or transformer)

o From training data, we can basically find how possibly “to”,
“two”, and “too” will be appeared after “go”

e Part of WSJ training data, 37,416 utterances
e “goto”: 51 times
e “gotwo”: 0times
e “go0t00”: 0 times



Word to text

“go 'tO”
¢ 9 » Language > “qo0 to”
go two {modeling} g

“90 too”

* Performed by language modeling module p(w)
e N-gram
e Neural language model (recurrent neural network or transformer)

o From training data, we can basically find how possibly “to”,
“two”, and “too” will be appeared after “go”

« WSJ all text data, 6,375,622 sentences
e “goto”: 2710 times
e “gotwo”:
o “gotoo”:



Word to text oo " [} 0 o1

modeling
)

14

* Performed by language modeling mod ¢
e N-gram
e Neural language model (recurrent neural network or transformer)

go
00”

1

e From training data, we can basically find how possibly “to”, “two”,
and “too” will be appeared after “go”

« WSJ all text data, 6,375,622 sentences

e “goto”: 2710 times

e “gotwo”: 2 times, e.g., “those serving shore plants often go two hundred miles or
more”

e “gotoo”:



Building speech recognition was really
difficult...

GOWT UW
GOW Z T UW »
| want to go to
_ CMU campus”
Feature Acoustic : Language >
) : Lexicon ]

L extraction modeling modeling
Ul ({3 1)

[ go to

: : : “go tWO )

NN “go too”

0 “goes to”

“goes two”
“goes too”

« We need to develop all components
« Each component requires a lot of background knowledge

« We need to tune hyper-parameters in each module



Next: End-to-end speech recognitic%rq\

“I want to go to

Foat campus”
S ca ”.re " Neural network g
extraction
L (4
rn‘v

)

LITITTIIT] ¢

 We can simply the complicated models
e Optimize all components by using back propagation
e We still need some formulations to make a problem tractable



